间充质干细胞源性外泌体在脑损伤治疗中的研究进展

岳艳, 屈艺, 母得志

中国当代儿科杂志 ›› 2017, Vol. 19 ›› Issue (12) : 1285-1290.

PDF(1367 KB)
HTML
PDF(1367 KB)
HTML
中国当代儿科杂志 ›› 2017, Vol. 19 ›› Issue (12) : 1285-1290. DOI: 10.7499/j.issn.1008-8830.2017.12.012
综述

间充质干细胞源性外泌体在脑损伤治疗中的研究进展

  • 岳艳, 屈艺, 母得志
作者信息 +

Research advances in mesenchymal stem cell-derived exosomes in treatment of brain injury

  • YUE Yan, QU Yi, MU De-Zhi
Author information +
文章历史 +

摘要

间充质干细胞(MSC)移植被认为是脑损伤修复最具潜力的治疗策略之一,其在神经修复的各个环节发挥着重要作用。最新研究表明MSC分泌的外泌体可能主导了脑损伤的修复,发挥促血管增生、免疫调节、抗凋亡及神经修复作用,其在新生儿脑损伤的治疗中具有较大潜力。该文根据当前的研究,就外泌体在脑损伤修复中的作用机制和应用前景及挑战作一概述,以期为干细胞治疗新生儿脑损伤提供新导向。

Abstract

Mesenchymal stem cell (MSC) transplantation is considered one of the most promising therapeutic strategies for the repair of brain injuries and plays an important role in various links of nerve repair. Recent studies have shown that MSC-derived exosomes may dominate the repair of brain injuries and help to promote angiogenesis, regulate immunity, inhibit apoptosis, and repair the nerves, and therefore, they have a great potential in the treatment of brain injuries in neonates. With reference to these studies, this article reviews the mechanism of action of exosomes in the repair of brain injuries and related prospects and challenges, in order to provide new directions for the treatment of brain injuries in neonates with stem cells.

关键词

间充质干细胞 / 外泌体 / 脑损伤 / 新生儿

Key words

Mesenchymal stem cell / Exosome / Brain injury / Neonate

引用本文

导出引用
岳艳, 屈艺, 母得志. 间充质干细胞源性外泌体在脑损伤治疗中的研究进展[J]. 中国当代儿科杂志. 2017, 19(12): 1285-1290 https://doi.org/10.7499/j.issn.1008-8830.2017.12.012
YUE Yan, QU Yi, MU De-Zhi. Research advances in mesenchymal stem cell-derived exosomes in treatment of brain injury[J]. Chinese Journal of Contemporary Pediatrics. 2017, 19(12): 1285-1290 https://doi.org/10.7499/j.issn.1008-8830.2017.12.012

参考文献

[1] Donega V, Nijboer CH, van Velthoven CT, et al. Assessment of long-term safety and efficacy of intranasal mesenchymal stem cell treatment for neonatal brain injury in the mouse[J]. Pediatr Res, 2015, 78(5):520-526.
[2] Chang YS, Ahn SY, Sung S, et al. Stem cell therapy for neonatal disorders:prospects and challenges[J]. Yonsei Med J, 2017, 58(2):266-271.
[3] Ophelders DR, Wolfs TG, Jellema RK, et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia[J]. Stem Cells Transl Med, 2016, 5(6):754-763.
[4] Yang Y, Ye Y, Su X, et al. MSC-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury[J]. Front Cell Neurosci, 2017, 11:55.
[5] Zhang G, Yang P. A novel cell-cell communication mechanism in the nervous system:exosomes[J]. J Neurosci Res, 2017 Jul 18. doi:10.1002/jnr.24113.[Epub ahead of print].
[6] Tran C, Damaser MS. Stem cells as drug delivery methods:application of stem cell secretome for regeneration[J]. Adv Drug Deliv Rev, 2015, 82-83:1-11.
[7] Zhang Y, Chopp M, Liu XS, et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons[J]. Mol Neurobiol, 2017, 54(4):2659-2673.
[8] Drommelschmidt K, Serdar M, Bendix I, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury[J]. Brain Behav Immun, 2017, 60:220-232.
[9] Konala VB, Mamidi MK, Bhonde R, et al. The current landscape of the mesenchymal stromal cell secretome:A new paradigm for cell-free regeneration[J]. Cytotherapy, 2016, 18(1):13-24.
[10] Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome[J]. Immunol Res, 2016, 64(4):831-840.
[11] 黄静兰,康冰瑶,屈艺,等. 外泌体对缺血再灌注器官损伤的保护作用[J]. 中国修复重建外科杂志, 2017, 31(6):751-754.
[12] Baglio SR, Rooijers K, Koppers-Lalic D, et al. Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species[J]. Stem Cell Res Ther, 2015, 6:127.
[13] Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes:a novel biomarker in cancer detection[J]. Cell Res, 2014, 24(6):766-769.
[14] Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11):2182-2189.
[15] Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection[J]. Int J Cardiol, 2015, 182:349-360.
[16] Feng Y, Huang W, Wani M, et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22[J]. PLoS One, 2014, 9(2):e88685.
[17] Xin H, Li Y, Liu Z, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles[J]. Stem Cells, 2013, 31(12):2737-2746.
[18] Li P, Kaslan M, Lee SH, et al. Progress in exosome isolation techniques[J]. Theranostics, 2017, 7(3):789-804.
[19] Zeringer E, Barta T, Li M, et al. Strategies for isolation of exosomes[J]. Cold Spring Harb Protoc, 2015, 2015(4):319-323.
[20] Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma[J]. J Extracell Vesicles, 2015, 4:27031.
[21] Tauro BJ, Greening DW, Mathias RA, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes[J]. Methods, 2012, 56(2):293-304.
[22] Kanwar SS, Dunlay CJ, Simeone DM, et al. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes[J]. Lab Chip, 2014, 14(11):1891-1900.
[23] Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15(3):4142-4157.
[24] Kim J, Tan Z, Lubman DM. Exosome enrichment of human serum using multiple cycles of centrifugation[J]. Electrophoresis, 2015, 36(17):2017-2026.
[25] Li S, Wang X, Li J, et al. Advances in the treatment of ischemic diseases by mesenchymal stem cells[J]. Stem Cells Int, 2016, 2016:5896061.
[26] Kitagawa M, Hojo M, Imayoshi I, et al. Hes1 and Hes5 regulate vascular remodeling and arterial specification of endothelial cells in brain vascular development[J]. Mech Dev, 2013, 130(9-10):458-466.
[27] Gonzalez-King H, Garcia NA, Ontoria-Oviedo I, et al. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes[J]. Stem Cells, 2017, 35(7):1747-1759.
[28] Zhang B, Wu X, Zhang X, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway[J]. Stem Cells Transl Med, 2015, 4(5):513-522.
[29] Ma J, Zhao Y, Sun L, et al. Exosomes derived from AKT-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D[J]. Stem Cells Transl Med, 2017, 6(1):51-59.
[30] Vrijsen KR, Maring JA, Chamuleau SA, et al. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN[J]. Adv Healthc Mater, 2016, 5(19):2555-2565.
[31] Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J]. Oncotarget, 2017, 8(28):45200-45212.
[32] Ge XT, Lei P, Wang HC, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats[J]. Sci Rep, 2014, 4:6718.
[33] Zhang B, Yin Y, Lai RC, et al. Mesenchymal stem cells secrete immunologically active exosomes[J]. Stem Cells Dev, 2014, 23(11):1233-1244.
[34] Huang P, Gebhart N, Richelson E, et al. Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation[J]. Cytotherapy, 2014, 16(10):1336-1344.
[35] Kyurkchiev D, Bochev I, Ivanova-Todorova E, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells[J]. World J Stem Cells, 2014, 6(5):552-570.
[36] Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs[J]. Nat Commun, 2015, 6:8472.
[37] Otero-Ortega L, Laso-García F, Gómez-de Frutos MD, et al. White matter repair after extracellular vesicles administration in an experimental animal model of subcortical stroke[J]. Sci Rep, 2017, 7:44433.
[38] Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats[J]. Stroke, 2017, 48(3):747-753.
[39] Zhu Y, Guan YM, Huang HL, et al. Human umbilical cord blood mesenchymal stem cell transplantation suppresses inflammatory responses and neuronal apoptosis during early stage of focal cerebral ischemia in rabbits[J]. Acta Pharmacol Sin, 2014, 35(5):585-591.
[40] Zhao Y, Sun X, Cao W, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury[J]. Stem Cells Int, 2015, 2015:761643.
[41] Zhang B, Shen L, Shi H, et al. Exosomes from human umbilical cord mesenchymal stem cells:identification, purification, and biological characteristics[J]. Stem Cells Int, 2016, 2016:1929536.
[42] Wang Y, Zhang L, Li Y, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium[J]. Int J Cardiol, 2015, 192:61-69.
[43] Braccioli L, van Velthoven C, Heijnen CJ. Exosomes:a new weapon to treat the central nervous system[J]. Mol Neurobiol, 2014, 49(1):113-119.
[44] Lai RC, Yeo RW, Tan KH, et al. Exosomes for drug delivery-a novel application for the mesenchymal stem cell[J]. Biotechnol Adv, 2013, 31(5):543-551.

基金

国家自然科学基金(81330016,81630038,81771634);四川科技厅项目(2016TD0002);国家科技部重大专向(2017YFA0104200);国家临床重点专科(儿科新生儿专业)建设项目(1311200003303)。


PDF(1367 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/