MicroRNA在癫癎中的研究进展

甘靖, 蔡浅云, 母得志

中国当代儿科杂志 ›› 2015, Vol. 17 ›› Issue (2) : 201-206.

PDF(1419 KB)
HTML
PDF(1419 KB)
HTML
中国当代儿科杂志 ›› 2015, Vol. 17 ›› Issue (2) : 201-206. DOI: 10.7499/j.issn.1008-8830.2015.02.020
综述

MicroRNA在癫癎中的研究进展

  • 甘靖, 蔡浅云, 母得志
作者信息 +

Roles of microRNAs in epilepsy

  • GAN Jing, CAI Qian-Yun, MU De-Zhi
Author information +
文章历史 +

摘要

微小核糖核酸(MicroRNA, miRNA)是一类短链非编码RNA,主要通过控制信使RNA的翻译起到转录后水平的调节作用.癫癎是一种严重的、慢性的神经系统疾病,大多在儿童期发病.大脑在病理的情况下会表达独特的miRNA,并与癫癎的发生有关.miRNA拓展了研究者对于癫癎发生机制的认识,使其成为新的治疗靶点和有效的抗癫癎新药.该文介绍了与癫癎发生密切相关的几种miRNA在癫癎发生、发展中的作用.

Abstract

MicroRNAs (miRNAs) are short, noncoding RNAs that function as posttranscriptional regulators of gene expression by controlling the translation of messenger RNAs. Epilepsy is a chronic and debilitating brain disorder and occurs frequently in childhood. The brain expresses several unique miRNAs which are associated with epileptogenesis. As a new layer of gene expression in the pathogenesis of epilepsy, miRNAs have shed a new light on the potential to transform an understanding of the underlying mechanisms promising novel therapeutic targets and effective antiepileptogenic medications. This article reviews the roles and mechanisms of miRNAs in the pathogenesis of seizure-damage and pathophysiology of epileptogenesis.

关键词

微小核糖核酸 / 癫癎 / 发病机制

Key words

MicroRNA / Epilepsy / Pathogenesis

引用本文

导出引用
甘靖, 蔡浅云, 母得志. MicroRNA在癫癎中的研究进展[J]. 中国当代儿科杂志. 2015, 17(2): 201-206 https://doi.org/10.7499/j.issn.1008-8830.2015.02.020
GAN Jing, CAI Qian-Yun, MU De-Zhi. Roles of microRNAs in epilepsy[J]. Chinese Journal of Contemporary Pediatrics. 2015, 17(2): 201-206 https://doi.org/10.7499/j.issn.1008-8830.2015.02.020

参考文献

[1] Chang BS, Lowenstein DH. Epilepsy[J]. N Engl J Med, 2003, 349(13): 1257-1266.
[2] Omran A, Elimam D, Yin F. MicroRNAs: new insights into chronic childhood diseases[J]. Biomed Res Int, 2013, 2013: 291826.
[3] Sano T, Reynolds J, Jimenez-Mateos EM, et al. MicroRNA-34a upregulation during seizure-induced neuronal death[J]. Cell Death Dis, 2012, 3(3): e287.
[4] Tivnan A, Tracey L, Buckley PG, et al. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma[J]. BMC Cancer, 2011, 11(1): 33.
[5] Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus[J]. Front Mol Neurosci, 2013, 6: 37.
[6] Aronica E, Fluiter K, Iyer A, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy[J]. Eur J Neurosci, 2010, 31(6): 1100-1107.
[7] Iyer A, Zurolo E, Prabowo A, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response[J]. PloS One, 2012, 7(9): e44789.
[8] Omran A, Peng J, Zhang C, et al. Interleukin-1beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy[J]. Epilepsia, 2012, 53(7): 1215-1224.
[9] Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects[J]. Nat Med, 2012, 18(7): 1087-1094.
[10] Magill ST, Cambronne XA, Luikart BW, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus[J]. Proc Natl Acad Sci U S A, 2010, 107(47): 20382-20387.
[11] Nudelman AS, DiRocco DP, Lambert TJ, et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo[J]. Hippocampus, 2010, 20(4): 492-498.
[12] Risbud RM, Lee C, Porter BE. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus[J]. Brain Res, 2011, 1424: 53-59.
[13] McKiernan RC, Jimenez-Mateos EM, Sano T, et al. Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death[J]. Exp Neurol, 2012, 237(2): 346-354.
[14] Song Yj, Tian Xb, Zhang S, et al. Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b[J]. Brain Res, 2011, 1387: 134-140.
[15] 胡凯. 癫癎大鼠海马miRNAs表达谱和 miR-34a与-9在癫癎发生中动态变化的研究[D]. 中南大学学位论文, 2012.
[16] Chen XM, Splinter PL, O'Hara SP, et al. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection[J]. J Biol Chem, 2007, 282(39): 28929-28938.
[17] Kan AA, van Erp S, Derijck AA, et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response[J]. Cell Mol Life Sci, 2012, 69(18): 3127-3145.
[18] You G, Yan W, Zhang W, et al. Significance of miR-196b in tumor-related epilepsy of patients with gliomas[J]. PloS One, 2012, 7(9): e46218.
[19] Ashhab MU, Omran A, Kong H, et al. Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy[J]. J Mol Neurosci, 2013, 51(3): 950-958.
[20] Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development[J]. Nature, 2006, 439(7074): 283-289.
[21] Meng Y, Zhang Y, Tregoubov V, et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice[J]. Neuron, 2002, 35(1): 121-133.
[22] Christensen M, Larsen LA, Kauppinen S, et al. Recombinant adeno-associated virus-mediated microRNA delivery into the postnatal mouse brain reveals a role for miR-134 in dendritogenesis in vivo[J]. Front Neural Circuit, 2009, 3: 16.
[23] Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, et al. miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132[J]. Am J Pathol, 2011, 179(5): 2519-2532.
[24] 肖慧媚, 廖建湘, 蒋莉. 微小核糖核酸miR-146a-5p, miR-23a-3p 在儿童耐药性癫癎血清中的表达[J]. 中国神经精神疾病杂志, 2013, 39(8): 500-503.
[25] Hermeking H. The miR-34 family in cancer and apoptosis[J]. Cell Death Differ, 2010, 17(2): 193-199.
[26] Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing[J]. Cell Cycle, 2007, 6(13): 1586-1593.
[27] Kaller M, Liffers ST, Oeljeklaus S, et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis[J]. Mol Cell Proteomics, 2011, 10(8): M111. 010462.
[28] Hu K, Zhang C, Long L, et al. Expression profile of microRNAs in rat hippocampus following lithium-pilocarpine-induced status epilepticus[J]. Neurosci Lett, 2011, 488(3): 252-257.
[29] Sano T, Reynolds JP, Jimenez-Mateos EM, et al. MicroRNA-34a upregulation during seizure-induced neuronal death[J]. Cell Death Dis, 2012, 3: e287.
[30] Hu K, Xie YY, Zhang C, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus[J]. BMC Neurosci, 2012, 13(1): 115.
[31] Aranha MM, Santos DM, Xavier JM, et al. Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation[J]. BMC Genomics, 2010, 11(1): 514.
[32] Shaked I, Meerson A, Wolf Y, et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase[J]. Immunity, 2009, 31(6): 965-973.
[33] Shaltiel G, Hanan M, Wolf Y, et al. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target[J]. Brain Struct Funct, 2013, 218(1): 59-72.
[34] Vo N, Klein ME, Varlamova O, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis[J]. Proc Natl Acad Sci U S A, 2005, 102(45): 16426-16431.
[35] Wayman GA, Davare M, Ando H, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP[J]. Proc Natl Acad Sci U S A, 2008, 105(26): 9093-9098.
[36] Wanet A, Tacheny A, Arnould T, et al. miR-212/132 expression and functions: within and beyond the neuronal compartment[J]. Nucleic Acids Res, 2012, 40(11): 4742-4753.
[37] Lusardi TA, Farr CD, Faulkner CL, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex[J]. J Cereb Blood Flow Metab, 2010, 30(4): 744-756.
[38] Nomura T, Kimura M, Horii T, et al. MeCP2-dependent repression of an imprinted miR-184 released by depolarization[J]. Hum Mol Genet, 2008, 17(8): 1192-1199.
[39] Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis[J]. Cancer Res, 2007, 67(3): 976-983.
[40] 杨武芬, 刘华, 郑颖, 等. 癫癎患者脑脊液和血清中miRNA-184的表达[J]. 中风与神经疾病杂志, 2014, 31(7): 615-618.
[41] Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators[J]. Mol Cell Biol, 2008, 28(17): 5369-5380.
[42] Elmér E, Kokaia M, Ernfors P, et al. Suppressed kindling epileptogenesis and perturbed BDNF and TrkB gene regulation in NT-3 mutant mice[J]. Exp Neurol, 1997, 145(1): 93-103.
[43] Peng J, Omran A, Ashhab MU, et al. Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy[J]. J Mol Neurosci, 2013, 50(2): 291-297.
[44] Uchida N. MicroRNA-9 controls a migratory mechanism in human neural progenitor cells[J]. Cell Stem Cell, 2010, 6(4): 294-296.
[45] Maroso M, Balosso S, Ravizza T, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures[J]. Nat Med, 2010, 16(4): 413-419.
[46] Omran A, Elimam D, Shalaby S, et al. MicroRNAs: a light into the "black box" of neuropediatric diseases?[J]. Neuromol Med, 2012, 14(4): 244-261.
[47] 杨洋, 阚清, 张盼, 等. MiRNA-126*靶基因预测及其相关信号通路的生物信息学分析[J]. 中国当代儿科杂志, 2013, 15(3): 227-232.

基金

国家自然科学基金(81330016);教育部科研基金(IRT0935);国家临床重点专科(儿科新生儿专业)建议项目(1311200003303).

PDF(1419 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/