1951年Homer W Smith提出急性肾衰竭(acute renal failure,ARF)以来,ARF的定义一直没有得 到统一,至少有大于30种不同ARF的定义,使 ARF临床研究结果难以比较,也难以得出研究的 结论,且血肌酐(Scr)的微小变化,其预后也不 一样。所以,急性透析质量指导组(Acute Dialysis Quality Initiative Group,ADQI)提出急性肾损伤 (acute kidney injury,AKI)的定义,其较ARF包 括范围更广,概念明确了从早期轻度到后期严重 程度,并通过标准验证了不管是否存在肾衰竭, Scr变化都与预后有关[1]。而且“injury”在病理 生理表述上较“failure”更准确,“kidney”较“renal” 更好理解。 1 AKI定义及分期标准
ADQI将AKI分为5期[1],简称RIFLE,即风 险期(risk of renal dysfunction,R),损伤期(injury to the kidney,I),衰竭期(failure of kidney function, F),功能丧失期(loss of kidney function,L)和 终末期肾脏病期(end stage renal disease,E)。前 3个为严重程度级别,后2个为预后级别。2005 年急性肾损伤网络(Acute Kidney Injury Network, AKIN)在荷兰阿姆斯特丹制定了新的AKI共识, 把AKI定义为:肾脏功能或结构方面的异常(包 括血、尿、组织检测或影像学方面的肾损伤标志 物异常),时限不超过3个月。同时制定了相应·346· 的诊断标准:肾功能在48 h内突然减退,表现为 Scr升高,绝对值≥26.4 mol/L,或Scr较基础值 升高≥50%;或尿量减少<0.5 mL/(kg·h),时间超 过6 h。(1)风险期:Scr是基线值的1.5倍,或 肾小球滤过率(GFR)下降>25%,尿量<0.5 mL/ (kg·h),持续6 h;(2)损伤期:Scr是基线值的2 倍,或GFR下降>50%,尿量<0.5 mL/(kg·h),持 续12 h;(3)衰竭期:Scr是基线值的3倍,或 Scr>4 mg/dL(>354 mol/L)伴急性升高>0.5 mg/dL (>44 mol/L),或GFR下降>75%,尿量<0.3 mL/ (kg·h)持续24 h或无尿12 h;(4)功能丧失 期:持续急性肾衰竭=完全丧失肾功能>4周; (5)终末期肾脏病期:终末期肾脏病>3个月。
RIFLE分期可在成人AKI的病程、费用、发 病率及病死率上进行独立的预测。Bell等 [2]报道30 d内AKI风险期、损伤期、衰竭期病死率分别 为23.5%、22.0%及57.9%。Maccariello等 [3]的报道则分别为72%、79%及76%。目前所有超过 200000病例研究表明,RIFLE分级越重,病死率 越高,住院及ICU住院时间越长,肾功能恢复越 低(病人出院时Scr更高)[4]。Akcan-Arikan等[5]采用改良RIFLE分期标准并在危重患儿AKI中的 应用发现:150例病人中,123例在第一周发生 AKI(82%),27例对照组未发生AKI,RIFLE第 一阶段的平均发生时间为入住ICU的3.3±3.1 d, 11例透析,24例死亡。入住ICU第一周未发生 AKI的病人发生肾损伤和衰竭的可能性小。 2 RIFLE分期存在的问题
Scr作为肾损伤的指标实际上反映的是GFR, 肾前性肾衰竭GFR下降、Scr上升、尿量减少, 但是早期并无肾损伤,Scr作为晚期标志物临床应 用让AKI的诊断干预延迟,导致AKI的预后不理 想。且Scr随年龄、性别、饮食、肌肉群、疾病不 同而改变(横纹肌溶解上升,神经肌肉病下降)。 药物也影响Scr分泌,如甲氧苄氨嘧啶、甲氰咪胍 可使Scr短暂可逆性升高。糖尿病酮症酸中毒Jaffe 反应、头孢西丁、氟胞嘧啶、胆红素的干扰可出 现Scr升高的假象。而尿量下降也不一定意味损 伤,可能为正常病理生理反应,因为尿量的影响 因素很多,如利尿剂可影响尿量,泌尿道的梗阻 可出现无尿的现象,尿量和Scr水平并不平行。而 且Scr及GFR的基线值在临床病人中时常缺乏, 从而使RIFLE分期出现困难。 3 早期生物学标志的研究
早期生物学标志诊断优势主要体现在GFR改 变之前出现的肾小管损伤指标,为分子和细胞水平 上损伤的信号。理想的生物学标志其可能在识别 AKI病因(缺血、中毒、败血症)、判断临床亚 型(肾前性、肾性、肾后性)、鉴别AKI的疾病 并及时干预,从而出现更好预后有重大意义,而且 在反映疾病严重性、监测进展、指导预后中有重大 的价值。目前有4种AKI生物学标记已在不同临 床试验验证,包括中性粒细胞明胶酶相关脂质运载 蛋白(NGAL)、白介素-18(IL-18)、肾损伤分 子-1(KIM-1)、肝脂肪酸结合蛋白(L-FABP)[6]。 在体外循环AKI的研究中发现:在NGAL升高 的36~48 h中Scr未升高,所以NGAL监测提供 一个以前没有发现的潜在治疗时机来干预阻止减 轻AKI。IL-18、KIM-1及L-FABP在体外循环中 研究(TRIBE-AKI)发现:NGAL、IL-18显示了 对AKI稳定的预测(较单纯临床风险因子),在 体外循环发展为AKI过程中,2 h NGAL上升,IL- 18和L-FABP 6 h上升,KIM-1在12 h后上升。而 且尿中的上述生物学标记较临床风险因子更能提 高AKI的预测力,临床上合并使用在AKI的不同 时段表现更有优势,更准确[7, 8, 9, 10, 11, 12, 13]。另外,在儿童重 症病人发展AKI中,NGAL上升较Scr提前2 d, 非败血症AKI中IL-18上升较Scr提前2 d。成人 ICU最近数据显示:入住ICU 2 d内NGAL、IL-18 及Cystatin C在预测发生评估AKI的不同阶段不同 时间点中也有一定的合理性[14]。 4 AKI的预防
已有两个研究[15, 16]显示AKI最重要原因为血 容量不足,为可预防的。AKI的预防对病死率的影 响较其他治疗方法显得更为重要。KDIGO推荐如 非出血性休克,建议使用等张的晶体液而不用胶 体液(白蛋白或淀粉)来扩张具有AKI风险或患 AKI病人的血管内容积,对于血管收缩性休克病人,推荐使用血管加压素加液体的治疗方法。KIDGO 推荐重症病人使用胰岛素疗法,血浆葡萄糖控制 在110~149 mg/d(6.1~8.3 mmol/L),建议任何阶 段的AKI病人,总能量摄入为20~30 kcal/(kg·d), 不建议为防止或推迟肾替代疗法而限制蛋白摄入, 建议在非分解代谢的、不需要透析的AKI病人, 摄入蛋白0.8~1.0 g/(kg·d),肾替代疗法的AKI病人 1.0~1.5 g/(kg·d),持续肾替代疗法和高分解代谢病 人,蛋白摄入最大至1.7 g/(kg·d)[17]。
腺苷为强血管收缩剂,缺血中由ATP分解代 谢释放;茶碱结合腺苷受体是其保护急性肾损伤 的可能机制,严重窒息新生儿每小时内静脉予茶 碱,可改善液体平衡及肌酐清除,降低Scr水平, 严重窒息新生儿KDIGO推荐给予一剂氨茶碱治疗。 但有研究发现使用茶碱组新生儿持续肺高压的发 生率更高,需进一步研究其可能的副作用[17, 18, 19, 20]。
AKI过程中少尿转变成无尿并未改变AKI的 进程,RCT(成人AKI透析者)研究表明,虽然 利尿剂呋塞米较安慰剂组显著缩短病程,但最终 透析方式、时间及病人的成活率并无差别[17]。
“肾性剂量”的多巴胺[0.5μg/(kg·min)至 3~5μg/(kg·min)]可提高缺血肾的灌注,但没有明 确研究证明可减少AKI透析需要及提高生存时间[21, 22, 23, 24, 25]。非诺多泮是强烈、短效、选择性多巴胺受体 1拮抗剂,可减轻血管收缩,增加肾血流,可减少 AKI发生率,减少肾替代治疗需要,减少ICU入 住时间,减少各种原因AKI病死率[26]。但也有临 床观察未发现非诺多泮有预防AKI作用,由于非 诺多泮降低血压的不良反应,因而有加重AKI的 潜在风险,非诺多泮的临床疗效有待进一步证实, KDIGO不建议用非诺多泮治疗AKI[17]。
动物模型显示胰岛素样生长因子-1(IGF-1)、 上皮生长因子、肝细胞生长因子可促进肾功能修 复,减轻病理程度及减少病死率,氧自由基清除剂, 分子氮及抗粘附分子也可减轻损伤程度[27, 28],多能间充质干细胞(mesenchymal stem cells,MSCs) 也可能促进AKI的损失修复[29]。但是临床研究结 果不尽人意,包括心房肽(anaritide)及IGF-1等 的研究。分析可能与实验以肾功能改变来决定治 疗时机选择较晚有关。推测如果采用比Scr更敏感 的生物学标志来评估损伤以决定治疗时机可能对 研究结果会有不同的影响[30, 31]。 5 AKI预后
AKI预后与病因有关。多系统衰竭病例较肾 脏疾病(溶血尿毒综合症、急进性肾小球肾炎、 急性肾小管坏死)病死率高,肾毒性AKI及缺血 缺氧AKI常常肾功能能够恢复。成人研究发现了 AKI转为慢性肾脏疾病的问题。肾脏生长期发生 AKI可减少肾单位数目导致肾小球肥大,残留肾单 位高滤过导致残留肾单位肾小球硬化,肾单位丢 失是发生晚期肾衰竭高风险重要因素。新生儿期 皮质坏死(即使肾功能已恢复)、严重过敏性紫 癜及溶血尿毒综合症是发生晚期肾脏合并症的高 风险因素,而且新生儿期的AKI也与以后肾脏疾 病发生有关,所以目前已将AKI作为慢性肾脏疾 病的独立预测因素之一[32, 33, 34, 35, 36, 37]。
[1] | Bellomo R, Ronco C, Kellum JA, et al. Acute Dialysis Quality Initiative workgroup. Acute renal failure: Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8: R204-212. |
[2] | Bell M, Liljestam E, Granath F, et al. Optimal follow-up time after continuous renal replacement therapy in actual renal failure patients stratified with the RIFLE criteria[J]. Nephrol Dial Transplant, 2005, 20(2): 354-360. |
[3] | Maccariello E, Soares M, Valente C, et al. RIFLE classification in patients with acute kidney injury in need of renal replacement therapy[J]. Intensive Care Med, 2007, 33(4): 597-605. |
[4] | Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: A systematic review[J]. Kidney Int, 2008, 73(5): 538-546. |
[5] | Akcan-Arikan A, Zappitelli M, Loftis LL, et al. Modified RIFLE criteria in critically ill children with acute kidney injury[J]. Kidney Int, 2007, 71(10): 1028-1035. |
[6] | Devarajan P. Emerging urinary biomarkers in the diagnosis of acute kidney injury[J]. Expert Opin Med Diagn, 2008, 2(4): 387-398. |
[7] | Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery[J]. Lancet, 2005, 365(9466): 1231-1238. |
[8] | Parikh CR, Mishra J, Thiessen-Philbrook H, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery[J]. Kidney Int, 2006, 70(1): 199-203. |
[9] | Portilla D, Dent C, Sugaya T, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery[J]. Kidney Int, 2008, 73(4): 465-472. |
[10] | Bennett M, Dent CL, Ma Q, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study[J]. Clin J Am Soc Nephrol, 2008, 3(3): 665-673. |
[11] | Dent CL, Ma Q, Dastrala S, et al. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study[J]. Crit Care, 2007, 11(6): R127. |
[12] | Krawczeski CD, Woo JG, Wang Y, et al. Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass[J]. J Pediatr, 2011, 158(6): 1009-1015. |
[13] | Endre ZH, Pickering JW, Walker RJ, et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function[J]. Kidney Int, 2011, 79(10): 1119-1130. |
[14] | Anochie IC, Eke FU. Acute renal failure in Nigerian children: Port Harcourt experience[J]. Pediatr Nephrol, 2005, 20(11): 1610-1614. |
[15] | Olowu WA, Adelusola KA. Pediatric acute renal failure in southwestern Nigeria[J]. Kidney Int, 2004, 66(4): 1541-1548. |
[16] | KDIGO AKI Work Group: KDIGO clinical practice guideline for acute kidney injury[J]. Kidney Int Suppl, 2012, 2: 1-138. |
[17] | Jenik AG, Ceriani Cernadas JM, Gorenstein A, et al. A randomized, double-blind, placebo-controlled trial of the effects of prophylactic theophylline on renal function in term neonates with perinatal asphyxia[J]. Pediatrics, 2000, 105(4): 849-853. |
[18] | Bakr AF. Prophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia-a study in a developing country[J]. Pediatr Nephrol, 2005, 20(9): 1249-1252. |
[19] | Bhat MA, Shah ZA, Makhdoomi MS, et al. Theophylline for renal function in term neonates with perinatal asphyxia: a randomized, placebo-controlled trial[J]. J Pediatr, 2006, 149(2): 180-184. |
[20] | Bellomo R, Chapman M, Finfer S, et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group[J]. Lancet, 2000, 356(9248): 2139-2143. |
[21] | Kellum JA, M Decker J. Use of dopamine in acute renal failure: a meta-analysis[J]. Crit Care Med, 2001, 29(8): 1526-1531. |
[22] | Lauschke A, Teichgraber UK, Frei U, et al. Low-dose dopamine worsens renal perfusion in patients with acute renal failure[J]. Kidney Int, 2006, 69(9): 1669-1674. |
[23] | Marik PE. Low-dose dopamine: a systematic review[J]. Intensive Care Med, 2002, 28(7): 877-883. |
[24] | Friedrich JO, Adhikari N, Herridge MS, et al. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death[J]. Ann Intern Med, 2005, 42(7): 510-524. |
[25] | Landoni G, Biondi-Zoccai GG, Tumlin JA, et al. Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials[J]. Am J Kidney Dis, 2007, 49(1): 56-68. |
[26] | Weston CE, Feibelman MB, Wu K, et al. Effect of oxidant stress on growth factor stimulation of proliferation in cultured human proximal tubule cells[J]. Kidney Int, 1999, 56(4): 1274-1276. |
[27] | Chatterjee PK, Cuzzocrea S, Brown PA, et al. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat[J]. Kidney Int, 2000, 58(2): 658-673. |
[28] | Lange C, Togel F, Ittrich H, et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats[J]. Kidney Int, 2005, 68(4): 1613-1617. |
[29] | Molitoris BA. Transitioning to therapy in ischemic acute renal failure[J]. J Am Soc Nephrol, 2003, 14(1): 265-267. |
[30] | Jo SK, Rosner MH, Okusa MD. Pharmacologic treatment of acute kidney injury: why drugs haven't worked and what is on the horizon[J]. Clin J Am Soc Nephrol, 2007, 2(2): 356-365. |
[31] | Metha RL, Pascual MT, Soroko S, et al. Diuretics, mortality and non-recovery of renal function in acute renal failure[J]. JAMA, 2002, 228(20): 2547-2553. |
[32] | Metnitz PG, Krenn CG, Steltzer H, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients[J]. Crit Care Med, 2002, 30(9): 2051-2058. |
[33] | Askenazi DJ, Feig DI, Graham NM, et al. 1-5 year longitudinal follow-up of pediatric patients after acute renal failure[J]. Kidney Int, 2006, 69(1): 184-189. |
[34] | Rodriguez MM, Gomez A, Abitbol C, et al. Comparative renal histomorphometry: a case study of oliogonephropathy of prematurity[J]. Pediatr Nephrol, 2005, 20(7): 945-949. |
[35] | Abitbol CL, Bauer CR, Montane B, et al. Long-term follow-up of extremely low birth weight infants with neonatal renal failure[J]. Pediatr Nephrol, 2003, 18(9): 887-893. |
[36] | Polito C, Papale MR, LaManna AL. Long term prognosis of acute renal failure in the full term newborn[J]. Clin Pediatr (Phila), 1998, 37(6): 381-386. |
[37] | Kist-van Holthe JE, Van Zwet JM, Brand R, et al. Prospective study of renal insufficiency after bone marrow transplantation[J]. Pediatr Nephrol, 2002, 17(12): 1032-1037. |