中国当代儿科杂志  2014, Vol. 16 Issue (1): 345-348   PDF    
认识儿童急性肾损伤
吴小川    
中南大学湘雅二医院儿童医学中心, 湖南 长沙 410011
摘要:急性肾损伤(acute kidney injury,AKI)以可逆性的血肌酐和尿素氮升高以及肾脏对水、电解质调节失衡为临床特征。AKI在儿童的发病率逐年升高,住院儿童及成人AKI发病率的增加与其病死率密切相关。继续依赖血肌酐和尿量去诊断AKI导致不能早期提供有效的治疗和支持性的干预措施去阻止和缓解AKI的发生。最近10年实验研究重点在发现和验证在肾功能改变之前识别AKI及有助于鉴别诊断的新的生物标志物。
关键词急性肾损伤     血肌酐     儿童    
Recognizing pediatric acute kidney injury
WU Xiao-Chuan    
Children's Medical Center, Second Xiangya Hospital, Central South University, Changsha 410011, China
Abstract: Acute kidney injury (AKI) is characterized by a reversible increase in blood concentration of creatinine and nitrogenous waste products and by the inability of the kidney to regulate fluid and electrolyte homeostasis appropriately. AKI in hospitalized patients is independently associated with increased morbidity and mortality in pediatric and adult populations. Continued reliance on serum creatinine and urine output for the diagnosis of AKI has resulted in an inability to provide successful therapeutic and supportive interventions to prevent and mitigate AKI. Research efforts over the last decade have foused on the discovery and validation of novel biomarkers to detect AKI prior to a change in kidney function and to make a differential diagnosis of AKI.
Key words: Acute kidney injury     Serum creatinine     Child    

1951年Homer W Smith提出急性肾衰竭(acute renal failure,ARF)以来,ARF的定义一直没有得 到统一,至少有大于30种不同ARF的定义,使 ARF临床研究结果难以比较,也难以得出研究的 结论,且血肌酐(Scr)的微小变化,其预后也不 一样。所以,急性透析质量指导组(Acute Dialysis Quality Initiative Group,ADQI)提出急性肾损伤 (acute kidney injury,AKI)的定义,其较ARF包 括范围更广,概念明确了从早期轻度到后期严重 程度,并通过标准验证了不管是否存在肾衰竭, Scr变化都与预后有关[1]。而且“injury”在病理 生理表述上较“failure”更准确,“kidney”较“renal” 更好理解。 1 AKI定义及分期标准

ADQI将AKI分为5期[1],简称RIFLE,即风 险期(risk of renal dysfunction,R),损伤期(injury to the kidney,I),衰竭期(failure of kidney function, F),功能丧失期(loss of kidney function,L)和 终末期肾脏病期(end stage renal disease,E)。前 3个为严重程度级别,后2个为预后级别。2005 年急性肾损伤网络(Acute Kidney Injury Network, AKIN)在荷兰阿姆斯特丹制定了新的AKI共识, 把AKI定义为:肾脏功能或结构方面的异常(包 括血、尿、组织检测或影像学方面的肾损伤标志 物异常),时限不超过3个月。同时制定了相应·346· 的诊断标准:肾功能在48 h内突然减退,表现为 Scr升高,绝对值≥26.4 mol/L,或Scr较基础值 升高≥50%;或尿量减少<0.5 mL/(kg·h),时间超 过6 h。(1)风险期:Scr是基线值的1.5倍,或 肾小球滤过率(GFR)下降>25%,尿量<0.5 mL/ (kg·h),持续6 h;(2)损伤期:Scr是基线值的2 倍,或GFR下降>50%,尿量<0.5 mL/(kg·h),持 续12 h;(3)衰竭期:Scr是基线值的3倍,或 Scr>4 mg/dL(>354 mol/L)伴急性升高>0.5 mg/dL (>44 mol/L),或GFR下降>75%,尿量<0.3 mL/ (kg·h)持续24 h或无尿12 h;(4)功能丧失 期:持续急性肾衰竭=完全丧失肾功能>4周; (5)终末期肾脏病期:终末期肾脏病>3个月。

RIFLE分期可在成人AKI的病程、费用、发 病率及病死率上进行独立的预测。Bell等 [2]报道30 d内AKI风险期、损伤期、衰竭期病死率分别 为23.5%、22.0%及57.9%。Maccariello等 [3]的报道则分别为72%、79%及76%。目前所有超过 200000病例研究表明,RIFLE分级越重,病死率 越高,住院及ICU住院时间越长,肾功能恢复越 低(病人出院时Scr更高)[4]。Akcan-Arikan等[5]采用改良RIFLE分期标准并在危重患儿AKI中的 应用发现:150例病人中,123例在第一周发生 AKI(82%),27例对照组未发生AKI,RIFLE第 一阶段的平均发生时间为入住ICU的3.3±3.1 d, 11例透析,24例死亡。入住ICU第一周未发生 AKI的病人发生肾损伤和衰竭的可能性小。 2 RIFLE分期存在的问题

Scr作为肾损伤的指标实际上反映的是GFR, 肾前性肾衰竭GFR下降、Scr上升、尿量减少, 但是早期并无肾损伤,Scr作为晚期标志物临床应 用让AKI的诊断干预延迟,导致AKI的预后不理 想。且Scr随年龄、性别、饮食、肌肉群、疾病不 同而改变(横纹肌溶解上升,神经肌肉病下降)。 药物也影响Scr分泌,如甲氧苄氨嘧啶、甲氰咪胍 可使Scr短暂可逆性升高。糖尿病酮症酸中毒Jaffe 反应、头孢西丁、氟胞嘧啶、胆红素的干扰可出 现Scr升高的假象。而尿量下降也不一定意味损 伤,可能为正常病理生理反应,因为尿量的影响 因素很多,如利尿剂可影响尿量,泌尿道的梗阻 可出现无尿的现象,尿量和Scr水平并不平行。而 且Scr及GFR的基线值在临床病人中时常缺乏, 从而使RIFLE分期出现困难。 3 早期生物学标志的研究

早期生物学标志诊断优势主要体现在GFR改 变之前出现的肾小管损伤指标,为分子和细胞水平 上损伤的信号。理想的生物学标志其可能在识别 AKI病因(缺血、中毒、败血症)、判断临床亚 型(肾前性、肾性、肾后性)、鉴别AKI的疾病 并及时干预,从而出现更好预后有重大意义,而且 在反映疾病严重性、监测进展、指导预后中有重大 的价值。目前有4种AKI生物学标记已在不同临 床试验验证,包括中性粒细胞明胶酶相关脂质运载 蛋白(NGAL)、白介素-18(IL-18)、肾损伤分 子-1(KIM-1)、肝脂肪酸结合蛋白(L-FABP)[6]。 在体外循环AKI的研究中发现:在NGAL升高 的36~48 h中Scr未升高,所以NGAL监测提供 一个以前没有发现的潜在治疗时机来干预阻止减 轻AKI。IL-18、KIM-1及L-FABP在体外循环中 研究(TRIBE-AKI)发现:NGAL、IL-18显示了 对AKI稳定的预测(较单纯临床风险因子),在 体外循环发展为AKI过程中,2 h NGAL上升,IL- 18和L-FABP 6 h上升,KIM-1在12 h后上升。而 且尿中的上述生物学标记较临床风险因子更能提 高AKI的预测力,临床上合并使用在AKI的不同 时段表现更有优势,更准确[7, 8, 9, 10, 11, 12, 13]。另外,在儿童重 症病人发展AKI中,NGAL上升较Scr提前2 d, 非败血症AKI中IL-18上升较Scr提前2 d。成人 ICU最近数据显示:入住ICU 2 d内NGAL、IL-18 及Cystatin C在预测发生评估AKI的不同阶段不同 时间点中也有一定的合理性[14]4 AKI的预防

已有两个研究[15, 16]显示AKI最重要原因为血 容量不足,为可预防的。AKI的预防对病死率的影 响较其他治疗方法显得更为重要。KDIGO推荐如 非出血性休克,建议使用等张的晶体液而不用胶 体液(白蛋白或淀粉)来扩张具有AKI风险或患 AKI病人的血管内容积,对于血管收缩性休克病人,推荐使用血管加压素加液体的治疗方法。KIDGO 推荐重症病人使用胰岛素疗法,血浆葡萄糖控制 在110~149 mg/d(6.1~8.3 mmol/L),建议任何阶 段的AKI病人,总能量摄入为20~30 kcal/(kg·d), 不建议为防止或推迟肾替代疗法而限制蛋白摄入, 建议在非分解代谢的、不需要透析的AKI病人, 摄入蛋白0.8~1.0 g/(kg·d),肾替代疗法的AKI病人 1.0~1.5 g/(kg·d),持续肾替代疗法和高分解代谢病 人,蛋白摄入最大至1.7 g/(kg·d)[17]

腺苷为强血管收缩剂,缺血中由ATP分解代 谢释放;茶碱结合腺苷受体是其保护急性肾损伤 的可能机制,严重窒息新生儿每小时内静脉予茶 碱,可改善液体平衡及肌酐清除,降低Scr水平, 严重窒息新生儿KDIGO推荐给予一剂氨茶碱治疗。 但有研究发现使用茶碱组新生儿持续肺高压的发 生率更高,需进一步研究其可能的副作用[17, 18, 19, 20]

AKI过程中少尿转变成无尿并未改变AKI的 进程,RCT(成人AKI透析者)研究表明,虽然 利尿剂呋塞米较安慰剂组显著缩短病程,但最终 透析方式、时间及病人的成活率并无差别[17]

“肾性剂量”的多巴胺[0.5μg/(kg·min)至 3~5μg/(kg·min)]可提高缺血肾的灌注,但没有明 确研究证明可减少AKI透析需要及提高生存时间[21, 22, 23, 24, 25]。非诺多泮是强烈、短效、选择性多巴胺受体 1拮抗剂,可减轻血管收缩,增加肾血流,可减少 AKI发生率,减少肾替代治疗需要,减少ICU入 住时间,减少各种原因AKI病死率[26]。但也有临 床观察未发现非诺多泮有预防AKI作用,由于非 诺多泮降低血压的不良反应,因而有加重AKI的 潜在风险,非诺多泮的临床疗效有待进一步证实, KDIGO不建议用非诺多泮治疗AKI[17]

动物模型显示胰岛素样生长因子-1(IGF-1)、 上皮生长因子、肝细胞生长因子可促进肾功能修 复,减轻病理程度及减少病死率,氧自由基清除剂, 分子氮及抗粘附分子也可减轻损伤程度[27, 28],多能间充质干细胞(mesenchymal stem cells,MSCs) 也可能促进AKI的损失修复[29]。但是临床研究结 果不尽人意,包括心房肽(anaritide)及IGF-1等 的研究。分析可能与实验以肾功能改变来决定治 疗时机选择较晚有关。推测如果采用比Scr更敏感 的生物学标志来评估损伤以决定治疗时机可能对 研究结果会有不同的影响[30, 31]5 AKI预后

AKI预后与病因有关。多系统衰竭病例较肾 脏疾病(溶血尿毒综合症、急进性肾小球肾炎、 急性肾小管坏死)病死率高,肾毒性AKI及缺血 缺氧AKI常常肾功能能够恢复。成人研究发现了 AKI转为慢性肾脏疾病的问题。肾脏生长期发生 AKI可减少肾单位数目导致肾小球肥大,残留肾单 位高滤过导致残留肾单位肾小球硬化,肾单位丢 失是发生晚期肾衰竭高风险重要因素。新生儿期 皮质坏死(即使肾功能已恢复)、严重过敏性紫 癜及溶血尿毒综合症是发生晚期肾脏合并症的高 风险因素,而且新生儿期的AKI也与以后肾脏疾 病发生有关,所以目前已将AKI作为慢性肾脏疾 病的独立预测因素之一[32, 33, 34, 35, 36, 37]

参考文献
[1] Bellomo R, Ronco C, Kellum JA, et al. Acute Dialysis Quality Initiative workgroup. Acute renal failure: Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8: R204-212.
[2] Bell M, Liljestam E, Granath F, et al. Optimal follow-up time after continuous renal replacement therapy in actual renal failure patients stratified with the RIFLE criteria[J]. Nephrol Dial Transplant, 2005, 20(2): 354-360.
[3] Maccariello E, Soares M, Valente C, et al. RIFLE classification in patients with acute kidney injury in need of renal replacement therapy[J]. Intensive Care Med, 2007, 33(4): 597-605.
[4] Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: A systematic review[J]. Kidney Int, 2008, 73(5): 538-546.
[5] Akcan-Arikan A, Zappitelli M, Loftis LL, et al. Modified RIFLE criteria in critically ill children with acute kidney injury[J]. Kidney Int, 2007, 71(10): 1028-1035.
[6] Devarajan P. Emerging urinary biomarkers in the diagnosis of acute kidney injury[J]. Expert Opin Med Diagn, 2008, 2(4): 387-398.
[7] Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery[J]. Lancet, 2005, 365(9466): 1231-1238.
[8] Parikh CR, Mishra J, Thiessen-Philbrook H, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery[J]. Kidney Int, 2006, 70(1): 199-203.
[9] Portilla D, Dent C, Sugaya T, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery[J]. Kidney Int, 2008, 73(4): 465-472.
[10] Bennett M, Dent CL, Ma Q, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study[J]. Clin J Am Soc Nephrol, 2008, 3(3): 665-673.
[11] Dent CL, Ma Q, Dastrala S, et al. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study[J]. Crit Care, 2007, 11(6): R127.
[12] Krawczeski CD, Woo JG, Wang Y, et al. Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass[J]. J Pediatr, 2011, 158(6): 1009-1015.
[13] Endre ZH, Pickering JW, Walker RJ, et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function[J]. Kidney Int, 2011, 79(10): 1119-1130.
[14] Anochie IC, Eke FU. Acute renal failure in Nigerian children: Port Harcourt experience[J]. Pediatr Nephrol, 2005, 20(11): 1610-1614.
[15] Olowu WA, Adelusola KA. Pediatric acute renal failure in southwestern Nigeria[J]. Kidney Int, 2004, 66(4): 1541-1548.
[16] KDIGO AKI Work Group: KDIGO clinical practice guideline for acute kidney injury[J]. Kidney Int Suppl, 2012, 2: 1-138.
[17] Jenik AG, Ceriani Cernadas JM, Gorenstein A, et al. A randomized, double-blind, placebo-controlled trial of the effects of prophylactic theophylline on renal function in term neonates with perinatal asphyxia[J]. Pediatrics, 2000, 105(4): 849-853.
[18] Bakr AF. Prophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia-a study in a developing country[J]. Pediatr Nephrol, 2005, 20(9): 1249-1252.
[19] Bhat MA, Shah ZA, Makhdoomi MS, et al. Theophylline for renal function in term neonates with perinatal asphyxia: a randomized, placebo-controlled trial[J]. J Pediatr, 2006, 149(2): 180-184.
[20] Bellomo R, Chapman M, Finfer S, et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group[J]. Lancet, 2000, 356(9248): 2139-2143.
[21] Kellum JA, M Decker J. Use of dopamine in acute renal failure: a meta-analysis[J]. Crit Care Med, 2001, 29(8): 1526-1531.
[22] Lauschke A, Teichgraber UK, Frei U, et al. Low-dose dopamine worsens renal perfusion in patients with acute renal failure[J]. Kidney Int, 2006, 69(9): 1669-1674.
[23] Marik PE. Low-dose dopamine: a systematic review[J]. Intensive Care Med, 2002, 28(7): 877-883.
[24] Friedrich JO, Adhikari N, Herridge MS, et al. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death[J]. Ann Intern Med, 2005, 42(7): 510-524.
[25] Landoni G, Biondi-Zoccai GG, Tumlin JA, et al. Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials[J]. Am J Kidney Dis, 2007, 49(1): 56-68.
[26] Weston CE, Feibelman MB, Wu K, et al. Effect of oxidant stress on growth factor stimulation of proliferation in cultured human proximal tubule cells[J]. Kidney Int, 1999, 56(4): 1274-1276.
[27] Chatterjee PK, Cuzzocrea S, Brown PA, et al. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat[J]. Kidney Int, 2000, 58(2): 658-673.
[28] Lange C, Togel F, Ittrich H, et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats[J]. Kidney Int, 2005, 68(4): 1613-1617.
[29] Molitoris BA. Transitioning to therapy in ischemic acute renal failure[J]. J Am Soc Nephrol, 2003, 14(1): 265-267.
[30] Jo SK, Rosner MH, Okusa MD. Pharmacologic treatment of acute kidney injury: why drugs haven't worked and what is on the horizon[J]. Clin J Am Soc Nephrol, 2007, 2(2): 356-365.
[31] Metha RL, Pascual MT, Soroko S, et al. Diuretics, mortality and non-recovery of renal function in acute renal failure[J]. JAMA, 2002, 228(20): 2547-2553.
[32] Metnitz PG, Krenn CG, Steltzer H, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients[J]. Crit Care Med, 2002, 30(9): 2051-2058.
[33] Askenazi DJ, Feig DI, Graham NM, et al. 1-5 year longitudinal follow-up of pediatric patients after acute renal failure[J]. Kidney Int, 2006, 69(1): 184-189.
[34] Rodriguez MM, Gomez A, Abitbol C, et al. Comparative renal histomorphometry: a case study of oliogonephropathy of prematurity[J]. Pediatr Nephrol, 2005, 20(7): 945-949.
[35] Abitbol CL, Bauer CR, Montane B, et al. Long-term follow-up of extremely low birth weight infants with neonatal renal failure[J]. Pediatr Nephrol, 2003, 18(9): 887-893.
[36] Polito C, Papale MR, LaManna AL. Long term prognosis of acute renal failure in the full term newborn[J]. Clin Pediatr (Phila), 1998, 37(6): 381-386.
[37] Kist-van Holthe JE, Van Zwet JM, Brand R, et al. Prospective study of renal insufficiency after bone marrow transplantation[J]. Pediatr Nephrol, 2002, 17(12): 1032-1037.