中国当代儿科杂志  2015, Vol. 17 Issue (8): 763-768   PDF    
肥胖对中枢性性早熟女童GnRH激发试验促黄体生成素峰值及相关激素的影响
周雪莲1, 傅君芬1 , 金菊花2, 董关萍1, 蒋优君1, 黄轲1, 陈雪峰1, 吴蔚1    
1. 浙江大学医学院附属儿童医院内分泌科, 浙江 杭州 310003;
2. 浙江省立同德医院儿科, 浙江 杭州 310012
摘要目的 探讨肥胖对中枢性性早熟女童GnRH激发试验促黄体生成素(LH)峰值及相关激素的影响。方法 选取我院2012~2014年完成GnRH激发试验的中枢性性早熟女童333例,根据体重指数(BMI)分为正常体重组(n=123)、超重组(n=108)和肥胖组(n=102),并对3组性发育指标进行比较分析。再分别从各组中随机抽取20例,检测血清瘦素(leptin)、性激素结合蛋白(SHBG)、神经激肽B(neurokini B)和吻素(kisspeptin)水平,Pearson相关分析分析BMI与各激素水平的相关性。结果 各组平均诊断年龄差异无统计学意义,但超重及肥胖组的骨龄显著大于正常体重组(P<0.05)。正常体重组血清LH激发峰值、SHBG水平显著高于超重及肥胖组,leptin及neurokiniB水平显著低于超重及肥胖组(P<0.05)。BMI与GnRH激发试验LH峰值、SHBG水平呈负相关(P<0.05),与leptin和neurokiniB水平呈正相关(P< 0.05)。结论 在分析性早熟女童GnRH激发试验结果及相关激素水平时需考虑BMI对结果的影响。
关键词体重指数     性早熟     GnRH激发试验     女童    
Effects of obesity on peak level of luteinizing hormone in gonadotropin-releasing hormone agonist test and obesity-related hormones in girls with central precocious puberty
ZHOU Xue-Lian, FU Jun-Fen , JIN Ju-Hua, DONG Guan-Ping, JIANG You-Jun, HUANG Ke, CHEN Xue-Feng, WU Wei    
Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
Abstract: Objective To explore the effects of obesity on the peak level of luteinizing hormone (LH) in the gonadotropin-releasing hormone (GnRH) agonist test and obesity-related hormones in girls with central precocious puberty (CPP). Methods Three hundred and thirty-three girls with CPP who underwent the GnRH agonist test between 2012 and 2014 were classified into three groups: normal weight (n=123), overweight (n=108), and obesity (n=102), according to body mass index (BMI). The sexual development indices were compared between the three groups. Twenty girls were randomly selected from each group for evaluation of the serum levels of leptin, sex hormone binding globulin (SHBG), neurokinin B, and kisspeptin. The correlation of BMI with the levels of various hormones was assessed using Pearson correlation analysis. Results There was no significant difference in mean age at diagnosis between the three groups; however, the bone age was significantly higher in the overweight and obesity groups than in the normal weight group (P < 0.05). The peak level of LH in the GnRH agonist test and SHBG level in the normal weight group were significantly higher than those in the overweight and the obesity groups, while the serum levels of leptin and neurokinin B were significantly lower in the normal weight group than in the overweight and the obesity groups (P < 0.05). BMI was negatively correlated with the peak level of LH in the GnRH agonist test and SHBG level (P < 0.05), and positively correlated with the levels of leptin and neurokinin B (P < 0.05). Conclusions The effects of BMI on the result of the GnRH agonist test and levels of obesity-related hormones should be taken into account in girls with precocious puberty.
Key words: Body mass index     Precocious puberty     Gonadotropin-releasing hormone agonist test     Girl    

近年来儿童肥胖发病率的增加遍及全球,与此同时女童青春期启动时间显著提前[1, 2],证据显示肥胖是促进女童性腺启动的主要原因之一[3, 4]。最近研究表明青春期肥胖女童促黄体生成素(LH)分泌脉冲频率及峰值均较正常体重者降低[5, 6]。Lee等[7] 研究发现性早熟男童LH激发峰值与体重指数(BMI)呈负相关,本团队前期研究发现BMI与性早熟女童LH激发峰值呈负相关[8],然而另一项单中心性早熟女童的研究显示高BMI值与阴毛、腋毛早现及骨龄提前相关,但与LH峰值、LH/卵泡刺激素(FSH)比值无关[9]。尽管肥胖对LH激发峰值的影响及其机制研究尚未阐明,但肥胖对青春期启动时间及激素水平的影响是明确的,并可导致肥胖相关并发症。过度肥胖及相关激素可能对下丘脑促性腺激素释放激素(GnRH)的分泌产生影响。

本研究通过分析不同BMI指数性早熟女童的性激素对GnRH激发试验的反应来研究肥胖对性早熟女童LH激发峰值的影响,在前期研究基础上,进一步探讨肥胖相关激素及神经激肽等影响性早熟女童LH激发峰值的作用机制,为临床精确分析和综合判断GnRH试验以及性早熟的诊断提出新的建议。 1 资料与方法 1.1 研究对象及分组

采用随机分层抽样方法,选取2012~2014年于本院确诊为中枢性性早熟,且年龄在6~9岁间的333例女童为研究对象(小于6岁的性早熟女童 因缺乏相应的BMI 标准未被纳入研究,月经来潮 者亦未纳入本项研究)。其中正常体重组123例(BMI:5% ~),超重组108例(BMI:85% ~),肥胖组102例(BMI ≥ 95%)。所有研究对象均无器质性疾病,并且未服用对性腺轴有影响的药物。儿童中枢性性早熟诊断标准参照卫生部2010 年颁布的《性早熟诊疗指南(试行)》[10]:男童 在9岁前,女童在8 岁前呈现第二性征或女童在 10 周岁前出现月经。儿童超重、肥胖判断标准参 照中国2~18岁儿童肥胖、超重筛查BMI界值点标准[11]:根据身高、体重计算BMI(BMI=体重/身高2),BMI在P85~范围内者为超重,BMI ≥ P95者为肥胖,且平素体健(无内分泌及遗传代谢疾病引发的继发性肥胖),近期无降血糖、降脂及有肝损作用的药物服用史,无酒精饮用史。本研究经所有患儿家长知情同意,并获得医院伦理委员会批准。 1.2 体格指标检测

受检者脱鞋帽、穿单衣,由专人使用标准方法测量其体重、身高,分别精确到0.1 kg、0.1 cm。 标准差单位(SDS)=(测量值- 平均数)/ 标准差 (SD)。 1.3 第二性征评价

由经统一培训的儿科内分泌医生进行,包括女 性乳房、阴毛。乳房发育评价采用视诊和触诊法,阴毛发育评价采用视诊法,按Tanner 分期标准,乳 房发育分为B1~B5期,阴毛发育分为PH1~PH5期[12],两侧乳房发育分期不同,则记录发育较成熟的一侧。 1.4 实验室及辅助检查

333例患者基础血清样本在GnRH(商品名: 戈那瑞林,生产厂家:马鞍山丰原制药有限公司,批号:H10960064) 注射前采集,GnRH(2.5~ 3 μg/kg,最大100 μg)注射后30、45、60、90 min采集血清标本检测LH、FSH 峰值。血清LH、 FSH、雌激素(E2)水平通过美国西门子公司化 学发光免疫分析仪检测。每组各随机抽取20 例 患儿进一步检测血清瘦素(leptin)、神经激肽B (neurokiniB)、吻素(kisspeptin) 和性激素结 合蛋白(SHBG)水平。leptin 采用放射免疫法检 测(leptin试剂盒,北京北方生物科技公司),neurokiniB 和kisspeptin 通过酶联免疫吸附试验(ELISA)检测(neurokiniB及kisspeptin试剂盒,美国凤凰制药公司),SHBG通过电化学发光法检测(SHBG诊断试剂盒,德国罗氏诊断有限公司)。

骨龄通过拍摄左手正位X线片(包括腕骨及桡尺骨下端),统一由本院专科医师按GP图谱法测算骨龄[13]。卵巢及子宫容积通过超声检查计算(0.523× 长× 宽× 深度),下丘脑- 垂体MRI 检查排除颅内占位病变。 1.5 统计学分析

采用SPSS 17.0统计学软件对数据进行统计学分析,正态分布的计量资料以均数±标准差(x±s)表示,多组间比较采用方差分析,组间两两比较采用SNK-q 检验;非正态分布的计量资料以中位数(范围)表示,多组间比较采用Kruskal Wallis H检验,组间两两比较采用Wilcoxon秩和检验。计数资料采用百分率(%)表示,多组间等级资料 比较采用Kruskal Wallis H 检验。对BMI与血清激素水平及骨龄的相关性分析采用Person相关分析。P<0.05 为差异有统计学意义。 2 结果 2.1 临床特征分析

各组患儿平均诊断年龄差异无统计学意义(P>0.05);肥胖组体重-SDS、身高-SDS和BMISDS显著高于超重组及正常体重组(P<0.05)。 超重组及肥胖组的骨龄显著大于正常体重组(P<0.05);子宫、卵巢容积在3组间比较差异无统计学意义(表 1)。各组性早熟女童乳房发育Tanner分期比例分布差异有统计学意义(P<0.05),正常体重组以B2期为主,见表 2

表 1 333例性早熟女童一般临床资料比较[x±s或中位数(范围)]

表 2 各组乳房发育Tanner分期[例(%)]
2.2 333 例性早熟女童血清激素水平分析

正常体重组基础LH、LH激发峰值以及LH/FSH比值明显高于肥胖组及超重组(P<0.05),但在超重组和肥胖组间比较差异均无统计学意义(P>0.05)。三组间基础FSH和FSH峰值比较差异无统计学意义(P>0.05)。见表 3

表 3 333例性早熟女童血清激素水平比较[中位数(范围)]
2.3 60例性早熟女童血清激素水平分析

正常体重组LH激发峰值和血清SHBG水平显著高于超重组及肥胖组(P<0.05);血清leptin及neurokiniB水平显著低于超重及肥胖组,其中超 重组leptin水平低于肥胖组(P<0.05)。各组间血 清基础LH、基础FSH、FSH峰值及kisspeptin水平差异无统计学意义(P>0.05)。见表 4

表 4 60例性早熟女童血清激素水平比较[ 中位数(范围)]
2.4 相关性分析

结果显示性早熟女童的BMI与LH激发峰值、基础LH值和SHBG水平呈负相关(分别r=-0.429、-0.314、-0.555,P<0.01);与leptin水平和骨龄呈正相关(分别r=0.692、0.203 P<0.01)。 3 讨论

肥胖对女性激素水平的影响贯穿青春前期、青春期及成年期。近期研究表明青春前期及青春期肥胖女童睡眠相关LH分泌减弱[5, 6, 14],肥胖妇女 平均LH水平、LH脉冲分泌振幅、LH激发峰值也显著低于正常体重者[15],肥胖患者月经周期中孕酮、LH、FSH水平相对较低[16]。本研究数据显示 正常体重者血清基础LH及LH激发峰值较超重及肥胖组显著升高,与前期研究结论一致。这些数据提示过度肥胖在一定程度上反而抑制了下丘脑- 垂体-性腺轴的功能。然而,另外一项研究则显示肥胖与阴毛、腋毛早现及骨龄进展有关,但对LH分泌无明显影响[9],这可能与该实验将年龄低 于3 岁的性早熟女童也纳入了研究有关,不能除 外“小青春期”的干扰。因此还需多中心大样本的临床试验进一步明确肥胖对青春期LH分泌的影 响及作用机制。

肥胖对下丘脑-垂体-性腺轴的作用机制目前尚未明确。本研究发现肥胖伴性早熟女童血清leptin和neurokiniB水平显著高于正常组,而血清SHBG水平则低于正常组。Leptin由外周成熟脂肪细胞分泌,通过外周及中枢受体参与能量平衡和生殖内分泌的调节[17]。人类leptin及其受体突变可导致不同程度的低促性腺素性功能减退症、食欲增加及肥胖[18]。在青春期早期,血清leptin水平存在性别差异,女童血清leptin水平明显高于男童,这与女童性早熟发病率高于男童一致[19]。人类及动物实验研究均显示,外源性leptin与下丘脑leptin受体结合后可增加GnRH脉冲分泌频率,刺激LH及FSH分泌[20, 21],高水平leptin可促进青春期启动[22]。然而研究显示血清leptin水平与肥胖呈正相关,这可能与leptin抵抗有关[23]。因此,尽管肥胖儿童外周leptin水平增加,由于存在中枢抵抗,中枢leptin水平不足以刺激GnRH分泌,从而抑制LH分泌[24]

最新研究显示肥胖相关的内分泌机制与青春前期血清SHBG下降密切相关,女童5岁时SHBG水平越低,进入TannerⅡ期越早,LH分泌、生长加速、月经来潮越早[25]。一项肥胖高加索儿童的研究显示,减肥后男童胰岛素敏感性、血清SHBG、FSH、LH水平均显著升高,女童血清LH水平无明显改变[26]。身体脂肪分布的遗传危险性(genetic risk score,GRS)与血清SHBG水平下降显著相关,并且GRS与SHBG对胰岛素抵抗具有叠加效应[27]。青春期生长激素及IGF-1分泌增加,降低了胰岛素敏感性,从而出现代偿性高胰岛素血症,这种代偿性高胰岛素血症在肥胖女童中表现更为明显[28]。高胰岛素血症不仅降低了SHBG的合成、雌激素的灭活[25, 29],也增加了芳香化酶的活性,使血清睾酮向雌激素转换加速,从而促进乳房发育[28]。然而,长期高水平的雌激素可降低下丘脑-垂体-性腺轴的敏感性及负反馈抑制作用,最终导致LH激发峰值降低。

NeurokiniB(NKB)是影响青春期启动的另一因素,通过与下丘脑的受体结合参与生殖内分泌的调节。编码NKB及其受体NK3R的基因失活突变可导致低促性腺素性功能减退症和不孕症[30]。动物实验显示NKB/NK3R通路在雌鼠青春前期及成年期适当激素环境下可控制LH释放[31, 32]。Kinsey-Jones等[33]发现NKB激动剂可抑制卵巢切除后雌激素替代治疗的雌鼠LH分泌,另一项研究显示NKB受体拮抗剂可减少LH分泌的频率和振幅,并使雌鼠青春期启动延迟[34]。本研究显示肥胖及超重性早熟女童血清NKB水平较正常体重组高,但LH激发峰值则低于正常体重组,与动物实验研究结论相符。

Kisspeptin及其受体是调节GnRH分泌的重要信号通路。人类遗传研究显示编码Kisspeptin的基因KISS1失活突变可导致低促性腺素性功能减退症[35],编码其受体的基因GPR54激活突变可导致中枢性性早熟[36]。动物模型显示Kiss-1在性早熟雌鼠下丘脑mRNA表达较正常对照显著增加[37]。肥胖青春前期女童血清kisspeptin水平较正常对照高[38],在leptin缺乏的动物模型中,kisspeptin表达减少[39, 40],然而给leptin缺乏的啮齿动物外源性注射kisspeptin可增加促性腺激素的分泌[39]。这些研究表明kisspeptin神经核可能是leptin的下游调控因子,共同参与性腺轴的调控。大量研究表明NKB为Kisspeptin神经核的上游调控因子,共同参与生殖内分泌的调控[31, 41, 42]。本研究显示正常体重组血清kisspeptin水平较肥胖组低,与动物实验研究结论一致,但差异不具有统计学意义,可能与样本量小有关。leptin,neurokiniB和kisspeptin之间的相互作用及对下丘脑-垂体-性腺轴的调控机制需更进一步研究证实。

本研究显示肥胖伴中枢性性早熟女童LH激发峰值相对较低,可能与血清高leptin、neurokiniB和低SHBG水平及其信号通路的调节作用相关。在对肥胖伴中枢性性早熟女童的诊断过程中需要考虑BMI的影响因素,同时还需更多实验研究脂肪因子、神经激肽及其信号通路对GnRH分泌的调控机制。

参考文献
[1] Euling SY, Herman-Giddens ME, Lee PA, et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings[J]. Pediatrics, 2008, 121(3): S172-S191.
[2] Soriano-Guillen L, Corripio R, Labarta JI, et al. Central precocious puberty in children living in Spain: incidence, prevalence, and influence of adoption and immigration[J]. J Clin Endocrinol Metab, 2010, 95(9): 4305-4313.
[3] Lee JM, Appugliese D, Kaciroti N, et al. Weight status in young girls and the onset of puberty[J]. Pediatrics, 2007, 119(3): e624-e630.
[4] Dai YL, Fu JF, Liang L, et al. Association between obesity and sexual maturation in Chinese children: a muticenter study[J]. Int J Obes (Lond), 2014, 38(10): 1312-1316.
[5] Bordini B, Littlejohn E, Rosenfield RL. Blunted sleep-related luteinizing hormone rise in healthy premenarcheal pubertal girls with elevated body mass index[J]. J Clin Endocrinol Metab, 2009, 94(4): 1168-1175.
[6] Collins JS, Beller JP, Burt Solorzano C, et al. Blunted day-night changes in luteinizing hormone pulse frequency in girls with obesity: the potential role of hyperandrogenemia[J]. J Clin Endocrinol Metab, 2014, 99(8): 2887-2896.
[7] Lee HS, Park HK, Ko JH, et al. Impact of body mass index on luteinizing hormone secretion in gonadotropin-releasing hormone stimulation tests of boys experiencing precocious puberty[J]. Neuroendocrinology, 2012, 97(3): 225-231.
[8] Fu JF, Liang JF, Zhou XL, et al. Impact of BMI on gonadorelin-stimulated LH peak in premenarcheal girls with idiopathic central precocious puberty[J]. Obesity (Silver Spring), 2015, 23(3): 637-643.
[9] Giabicani E, Allali S, Durand A, et al. Presentation of 493 consecutive girls with idiopathic central precocious puberty: a single-center study[J]. PLoS One, 2013, 8(7): e70931.
[10] 中华人民共和国卫生部. 性早熟诊疗指南(试行)[卫办医政发(195)号][J]. 中国儿童保健杂志, 2011, 19(4): 390-392.
[11] 李辉, 季成叶, 宗心南, 等. 中国0-18岁儿童、青少年体块指数的生长曲线[J]. 中华儿科杂志, 2009, 47(7): 487-492.
[12] Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls[J]. Arch Dis Child, 1969, 44(235): 291-303.
[13] Greulich WPS. Radiographic atlas of skeletal development of the hand and wrist[M]. 2nd edition. California: Stanford University Press, 1959: 145-150.
[14] Rosenfield RL, Bordini B. Evidence that obesity and androgens have independent and opposing effects on gonadotropin production from puberty to maturity[J]. Brain Res, 2010, 1364: 186-197.
[15] Roth LW, Bradshaw-Pierce EL, Allshouse AA, et al. Evidence of GnRH antagonist escape in obese women[J]. J Clin Endocrinol Metab, 2014, 99(5): E871-E875.
[16] Yeung EH, Zhang C, Albert PS, et al. Adiposity and sex hormones across the menstrual cycle: the BioCycle Study[J]. Int J Obes (Lond), 2013, 37(2): 237-243.
[17] Chan JL, Matarese G, Shetty GK, et al. Differential regulation of metabolic, neuroendocrine, and immune function by leptin in humans[J]. Proc Natl Acad Sci USA, 2006, 103(22): 8481-8486.
[18] Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor[J]. N Engl J Med, 2007, 356(3): 237-247.
[19] Martos-Moreno GA, Barrios V, Argente J. Normative data for adiponectin, resistin, interleukin 6, and leptin/receptor ratio in a healthy Spanish pediatric population: relationship with sex steroids[J]. Eur J Endocrinol, 2006, 155(3): 429-434.
[20] Martos-Moreno GA, Chowen JA, Argente J. Metabolic signals in human puberty: effects of over and undernutrition[J]. Mol Cell Endocrinol, 2010, 324(1-2): 70-81.
[21] Soliman AT, Yasin M, Kassem A. Leptin in pediatrics: a hormone from adipocyte that wheels several functions in children[J]. Indian J Endocrinol Metab, 2012, 16(3): S577-S587.
[22] Franco JG, Lisboa PC, da Silva Lima N, et al. Resveratrol prevents hyperleptinemia and central leptin resistance in adult rats programmed by early weaning[J]. Horm Metab Res, 2014, 46(10): 728-735.
[23] Shimizu H, Oh IS, Okada S, et al. Leptin resistance and obesity[J]. Endocr J, 2007, 54(1): 17-26.
[24] Pan H, Guo J, Su Z. Advances in understanding the interrelations between leptin resistance and obesity[J]. Physiol Behav, 2014, 130: 157-169.
[25] Pinkney J, Streeter A, Hosking J, et al. Adiposity, chronic inflammation, and the prepubertal decline of sex hormone binding globulin in children: evidence for associations with the timing of puberty (earlybird 58)[J]. J Clin Endocrinol Metab, 2014, 99(9): 3224-3232.
[26] Birkebaek NH, Lange A, Holland-Fischer P, et al. Effect of weight reduction on insulin sensitivity, sex hormone-binding globulin, sex hormones and gonadotrophins in obese children[J]. Eur J Endocrinol, 2010, 163(6): 895-900.
[27] Shi J, Li L, Hong J, et al. Genetic variants determining body fat distribution and sex hormone-binding globulin among Chinese female young adults[J]. J Diabetes, 2014, 6(6): 514-518.
[28] Pilia S, Casini MR, Foschini ML, et al. The effect of puberty on insulin resistance in obese children[J]. J Endocrinol Invest, 2009, 32(5): 401-405.
[29] Kavanagh K, Espeland MA, Sutton-Tyrrell K, et al. Liver fat and SHBG affect insulin resistance in midlife women: the Study of Women's Health Across the Nation (SWAN)[J]. Obesity (Silver Spring), 2013, 21(5): 1031-1038.
[30] Topaloglu AK, Reimann F, Guclu M, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction[J]. Nat Genet, 2009, 41(3): 354-358.
[31] Navarro VM, Castellano JM, McConkey SM, et al. Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat[J]. Am J Physiol Endocrinol Metab, 2011, 300(1): E202-E210.
[32] Navarro VM, Ruiz-Pino F, Sanchez-Garrido MA, et al. Role of neurokinin B in the control of female puberty and its modulation by metabolic status[J]. J Neurosci, 2012, 32(7): 2388-2397.
[33] Kinsey-Jones JS, Grachev P, Li XF, et al. The inhibitory effects of neurokinin B on GnRH pulse generator frequency in the female rat[J]. Endocrinology, 2012, 153(1): 307-315.
[34] Li SY, Li XF, Hu MH, et al. Neurokinin B receptor antagonism decreases luteinising hormone pulse frequency and amplitude and delays puberty onset in the female rat[J]. J Neuroendocrinol, 2014, 26(8): 521-527.
[35] Topaloglu AK, Tello JA, Kotan LD, et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism[J]. N Engl J Med, 2012, 366(7): 629-635.
[36] Teles MG, Bianco SD, Brito VN, et al. A GPR54-activating mutation in a patient with central precocious puberty[J]. N Engl J Med, 2008, 358(7): 709-715.
[37] 刘小辉, 刘芳, 夏治, 等. Kiss-1在雌性性早熟大鼠下丘脑中mRNA的表达[J]. 中国当代儿科杂志, 2007, 9(1): 59-62.
[38] Pita J, Barrios V, Gavela-Perez T, et al. Circulating kisspeptin levels exhibit sexual dimorphism in adults, are increased in obese prepubertal girls and do not suffer modifications in girls with idiopathic central precocious puberty[J]. Peptides, 2011, 32(9): 1781-1786.
[39] Roa J, Vigo E, Garcia-Galiano D, et al. Desensitization of gonadotropin responses to kisspeptin in the female rat: analyses of LH and FSH secretion at different developmental and metabolic states[J]. Am J Physiol Endocrinol Metab, 2008, 294(6): E1088-E1096.
[40] Quennell JH, Howell CS, Roa J, et al. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice[J]. Endocrinology, 2011, 152(4): 1541-1550.
[41] Navarro VM, Gottsch ML, Wu M, et al. Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse[J]. Endocrinology, 2011, 152(11): 4265-4275.
[42] Garcia-Galiano D, van Ingen Schenau D, Leon S, et al. Kisspeptin signaling is indispensable for neurokinin B, but not glutamate, stimulation of gonadotropin secretion in mice[J]. Endocrinology, 2012, 153(1): 316-328.