中国当代儿科杂志  2016, Vol. 18 Issue (12): 1308-1312   PDF    
儿童阅读障碍易感基因研究进展
孔锐1,2, 宋然然1     
1. 华中科技大学同济医学院公共卫生学院儿少卫生与妇幼保健学系, 湖北 武汉 430030 ;
2. 苏州市立医院本部儿童保健科, 江苏 苏州 215000
摘要: 儿童发展性阅读障碍(developmental dyslexia)是神经发育障碍性疾病之一,受到多个易感基因的影响。近年来学者们通过染色体分析、全基因组关联研究以及关联分析与基因功能研究、神经影像、神经生理技术相结合等研究方法发现一些阅读障碍易感基因。该文对儿童发展性阅读障碍的易感基因研究进展进行综述。以阅读障碍易感基因研究为起点,为其“基因-大脑-行为”层面的深入研究奠定基础,进而为探究阅读障碍的病因和发病机制提供科学线索。
关键词发展性阅读障碍     易感基因     儿童    
Research advances in susceptible genes for developmental dyslexia in children
KONG Rui, SONG Ran-Ran     
Department of Maternal and Child Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Abstract: Developmental dyslexia in children is one of the neurodevelopmental disorders and is affected by various susceptible genes. In recent years, researchers have found some susceptible genes for dyslexia via chromosome analysis, genome-wide association studies, association analysis, gene function research, neuroimaging, and neurophysiological techniques. This article reviews the research advances in susceptible genes for developmental dyslexia, and with the study on susceptible genes for dyslexia, it lays a foundation for in-depth studies on the "gene-brain-behavior" level and provides scientific clues for exploring etiology and pathogenesis of dyslexia.
Key words: Developmental dyslexia     Susceptible gene     Child    

发展性阅读障碍(developmental dyslexia)是指拥有正常的智力,无脑损伤或其他器质性病变,但在相同的教育学习机会、社会经济条件下,其阅读能力水平明显落后于相应年龄或智力所达到的水平。先前家族和双生子研究结果提示阅读障碍有高度家族聚集性和遗传性[1]。随着分子遗传学技术的发展,国内外学者开展大量研究以探索阅读障碍的遗传机制,从遗传视角为阐明其病因及发病机制提供更为直接的科学证据。本文将综合近年来文献报道和研究结果,对发展性阅读障碍重要的易感基因的研究进展进行综合描述。

1 DYX1C1基因

2003年Taipale等[2]对15号染色体上发生易位的断裂点进行精确定位,提出DYX1C1基因功能性变异位点即-3G > A和1249G > T位点多态性与阅读障碍易感性显著相关。随后研究者们对以上两个位点展开一些重复性验证研究,但结果并非一致[3-4]。除了以上两个位点,近年来Bates等[5]和Venkatesh等[6]研究发现该基因rs17819126、rs3743204、rs685935、rs12899331位点及rs12899331-rs1075938风险单倍体与阅读拼写水平和阅读相关认知能力(如快速阅读能力及语音意识等)显著相关。另一方面,动物实验研究结果显示胚胎期被敲除Dyx1c1基因的小鼠大脑神经元细胞发生异常迁移[7]。Tammimies等[8]研究还发现,基于DYX1C1基因的分子网络影响神经系统发育和调控神经元迁移相关基因的表达。此外,研究表明DYX1C1基因表达水平影响雌激素受体蛋白表达,其可能通过该通路影响大脑发育和认知功能[9]。最新研究证据还显示,DYX1C1基因突变会干扰小鼠运动纤毛的外部和内部动力蛋白臂,进而影响纤毛活动,而纤毛在细胞信号传导和细胞运动中发挥重要作用[4]

2 DCDC2基因和KIAA0319基因

截止目前为止,位于染色体6p22上DYX2基因座是被重复验证出最多的一个阅读障碍易感区域。学者们通过精细定位研究方法在该区域内发现了两个重要的阅读障碍候选基因,即DCDC2基因和KIAA0319基因[10-11]

2.1 DCDC2基因

2005年,Meng等[10]发现位于DYX2基因座上DCDC2基因的微小缺失与阅读障碍各种性状表现相关。其微小缺失中所包含的短串联重复序列被命名为BV677278。近年Marino等[12]通过数量性状传递不平衡检测方法再次证实BV677278缺失与阅读能力和记忆缺陷显著相关。实验研究结果提示BV677278可与ETV6转录因子结合,影响DCDC2基因的调控[13]。此外,诸多研究还发现DCDC2基因上其他遗传标记如rs793862、rs807701、rs807724及其与BV677278缺失构成的危险单倍体与阅读障碍易感性、阅读流畅性和拼写能力相关[14-16]。近年来Scerri等[17]和Newbury等[18]的队列研究的结果也与此较为一致。

关于DCDC2基因的功能,其编码的蛋白包括两个双皮质素(DCX)区域。该区域与神经元微管结构相互作用以维持其稳定[19]。先前研究显示,与敲除小鼠Dyx1c1研究相类似,敲除宫内小鼠Dcdc2基因表达可影响神经元迁移[10]。近年研究证据表明该基因还在神经元细胞的生理方面发挥一定的作用,可影响兴奋性和触发动作电位的精确性[20]。脑功能影像证据也显示在语音加工任务中BV677278与大脑阅读相关的脑区激活程度显著相关[21]。且Giraud等[22]发现DCDC2基因罕见突变与失匹配负波(MMN)的晚成分显著相关。

2.2 KIAA0319基因

有研究显示,KIAA0319基因rs4504469、rs2038137位点与TTRAP基因rs2143340位点构成的风险单倍体与阅读障碍的类型以及多种阅读相关的数量性状相关[11]。研究者们试图从细胞水平揭示该基因调控序列变异可影响其转录调控。如研究者们认为该风险单倍体与细胞系中KIAA0319基因的低表达有关[23]。此外,rs9461045与rs2143340高度连锁,其为转录因子OCT-1提供蛋白结合区域,导致该风险单倍体中KIAA0319基因表达下调[24]

KIAA0319基因所编码的蛋白包括多囊肾区和细胞外部分,其可能不仅在神经元与神经胶质细胞的粘附过程中发挥一定的作用,还参与细胞外信号传导[25]。动物实验证据显示敲除胚胎期大鼠脑部Kiaa0319基因后除了影响神经元迁移,还影响树突生长和分化,如出现神经元树突尖端过度生长[26]。另外,Szalkowski等[27]发现敲除胚胎期Kiaa0319基因后的成年雄性小鼠其胼胝体的中央矢状面区域明显减少。而胼胝体与听觉处理过程密切相关[28],故研究者们推测该基因可能与阅读障碍患者的语音处理缺陷有关[27]

3 ROBO1基因

2005年,Hannula-Jouppi等[29]发现ROBO1基因的风险单倍体型与阅读障碍存在共分离现象。且该单倍体虽未影响蛋白质的编码,但可下调ROBO1基因表达,故推测该基因调控的改变可能与阅读障碍发病相关。近年来Tran等[30]在加拿大人群的两个独立样本中均发现ROBO1基因的rs12495133与阅读障碍易感性相关,且其变异会降低该基因的表达。此外,研究还发现该基因与语音短时记忆能力以及阅读障碍患者的数学运算能力相关[31-32]

ROBO1基因功能学研究表明该基因作为轴突向导受体的基因,其所编码的蛋白作为分子信号受体参与神经元迁移。其在大脑半球之间的轴突、树突生长发育的导向方面发挥重要作用[29, 33]。Lamminmaki等[33]的研究提示ROBO1基因表达与听觉轴突的导向、跨越功能有关,影响听觉通路正常交叉过程。

4 MRPL19/C20RF3基因

2007年,Anthoni等[34]通过两阶段验证的研究方法发现DYX3基因座上的位于FLJ13391和MRPL19/C2ORF3基因之间区域的一风险单倍体与阅读障碍发病有关。MRPL19和C2ORF3基因呈高度连锁,且其表达与候选基因KIAA0319、DYX1C1、DCDC2和ROBO1基因相关。随后研究发现MRPL19/C2ORF3基因与一般的认知能力、智商IQ显著相关,且MRPL19基因的rs917235变异与连接皮层顶叶、枕叶和颞叶区域的白质体积有关[35]。而有的研究并未发现MRPL19/C2ORF3基因变异与语言、阅读各项表征相关。因此研究者们推测MRPL19/C2ORF3基因可能影响一般认知能力而非阅读能力[17-18]

5 KIAA0319L基因

2008年,位于1p34-p36(即DYX8)上的KIAA0319L基因被首次报道与阅读障碍有关。其与KIAA0319基因同源,所编码的蛋白与KIAA0319蛋白的相似度高达61%[36]。目前认为该基因与其他3个候选基因DYX1C1、DCDC2、KIAA0319影响神经元迁移,进而影响阅读障碍发生[37]。此外,有研究在中国人群中发现KIAA0319L的rs28366021位点变异与汉语阅读障碍易感性显著相关[38]

6 FOXP2基因

2001年,Lai等[39]在“KE”家族研究中首次发现位于SPCH1区域的FOXP2基因错义突变与严重的语言和言语障碍发生有关。目前研究证据显示FOXP2作为重要的转录调控因子,可调控其他基因的表达。如Vernes等[40]发现FOXP2基因可下调靶基因CNTNAP2基因的表达,影响神经粘附因子轴突蛋白的表达水平。该蛋白为神经元跨膜蛋白,在突触的构成组装、分化及其信息传递的方面起到关键的调控作用。FOXP2基因还可靶向调节与癫癎和语言相关的SRPX2基因表达水平进而影响大脑皮层树突棘和突触形成[41]。故在言语及语言能力相关的大脑神经发育过程中,FOXP2基因及其靶基因构成的基因网络在突触形成及其功能可塑性发展中发挥重要的作用[42]。此外,近年来研究还发现FOXP2基因rs12533005位点常见变异与阅读障碍发病风险相关,且与语音处理任务中颞顶区的过度激活有关[43]

7 DIP2A、S100B、DOCK4基因

研究者们通过染色体畸变的研究还发现其他的阅读障碍候选基因,如DIP2A、S100B、DOCK4基因。研究发现DIP2A与DNA甲基化过程相关的酶类及卵泡抑素相关蛋白结合,参与调控神经元的生长排列、记忆的形成和突触可塑性等[44-46]。最近研究提示DIP2A基因rs2255526位点变异与汉语阅读障碍发病风险相关[47]。关于S100B基因,其影响神经突起生长分子信号通路,参与突触可塑性过程[48]。且有研究显示该基因rs9722非编码变异与阅读障碍易感性有关[49]。此外,动物实验研究显示Dock4高表达于海马组织,影响树突棘的形成。后者对构建突触兴奋性的连接和神经功能性回路十分重要[50]。最近研究发现DOCK4基因rs2074130位点的错义突变与汉语阅读障碍的发病风险显著相关。且其与KIAA0319、DCDC2、KIAA0319L多个基因的交互作用对汉语阅读障碍的易感性可能产生更为显著的影响[38]

8 其他基因

近年来,其他一些阅读候选基因陆续被发现。Scerri等[51]研究发现位于DYX6基因座上的MC5R、DYM和NEDD4L基因与阅读障碍发病相关。随后Scerri等[17]还发现与特殊语言障碍相关的CMIP基因与阅读各项能力相关。最近Chen等[52]在中国人群中发现与口吃相关的GNPTAB和NAGPA基因可能与汉语阅读障碍发病相关。Einarsdottir等[53]发现CEP63基因突变与阅读障碍存在共分离现象。此外,与认知能力相关的GRIN2B基因被报道不仅与阅读障碍相关,还与阅读障碍患者的智商和认知能力缺陷有关[54]

9 总结与展望

近年来Poelmans等[55]基于蛋白质网络分析的方法提出:在神经元迁移调控网络中,神经元迁移和神经突起生长分子信号通路中多种蛋白相互作用,参与调控细胞骨架微管蛋白和肌动蛋白活动,影响神经突起的生长与迁移,进而影响中枢神经系统发育和功能。目前已知参与编码该分子信号通路中核心蛋白的基因主要有DYX1C1、DCDC2、KIAA0319、ROBO1、KIAA0319L、DIP2A、S100B、DOCK4等。该分子信号通路基因变异,核心蛋白表达异常,影响阅读障碍的发生。目前学者们试图从“基因-大脑-行为”方面来探究阅读障碍的发病机制。以阅读障碍候选基因的研究为落脚点,为后期的深入研究奠定基础。虽然一些候选基因被发现,但其远远不能解释遗传变异对阅读障碍影响的程度[56]。因此,继续开展阅读障碍分子遗传学研究仍然十分必要。另外,学者们认为阅读障碍具有遗传异质性,其发生是遗传因素、环境因素及其相互作用的结果[56]。然而关于阅读障碍基因-环境交互作用的研究仍较少见,且研究结果存在一定的争议,需要更多的研究加以验证与探究。近年来大量儿童阅读障碍的研究为其临床干预治疗提供了科学依据[57-58]。目前国外阅读障碍儿童的干预研究较多且已形成较为科学和系统的训练体系,而汉语阅读障碍的干预治疗研究仍较少见,需要更多的相关研究以促进其临床治疗方面的发展。

参考文献
[1] Schumacher J, Hoffmann P, Schmäl C, et al. Genetics of dyslexia:the evolving landscape[J]. J Med Genet , 2007, 44 (5) : 289–297. DOI:10.1136/jmg.2006.046516
[2] Taipale M, Kaminen N, Nopola-Hemmi J, et al. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain[J]. Proc Natl Acad Sci , 2003, 100 (20) : 11553–11558. DOI:10.1073/pnas.1833911100
[3] Tran C, Gagnon F, Wigg KG, et al. A family-based association analysis and meta-analysis of the reading disabilities candidate gene DYX1C1[J]. Am J Med Genet B Neuropsychiatr Genet , 2013, 162 (2) : 146–156. DOI:10.1002/ajmg.b.v162.2
[4] Tarkar A, Loges NT, Slagle CE, et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility[J]. Nat Genet , 2013, 45 (9) : 995–1003. DOI:10.1038/ng.2707
[5] Bates TC, Lind PA, Luciano M, et al. Dyslexia and DYX1C1:deficits in reading and spelling associated with a missense mutation[J]. Mol Psychiatry , 2009, 15 (12) : 1190–1196.
[6] Venkatesh SK, Siddaiah A, Padakannaya P, et al. Association of SNPs of DYX1C1 with developmental dyslexia in an Indian population[J]. Psychiatr Genet , 2014, 24 (1) : 10–20. DOI:10.1097/YPG.0000000000000009
[7] Currier TA, Etchegaray MA, Haight JL, et al. The effects of embryonic knockdown of the candidate dyslexia susceptibility gene homologue Dyx1c1 on the distribution of GABAergic neurons in the cerebral cortex[J]. Neuroscience , 2011, 172 : 535–546. DOI:10.1016/j.neuroscience.2010.11.002
[8] Tammimies K, Vitezic M, Matsson H, et al. Molecular networks of DYX1C1 gene show connection to neuronal migration genes and cytoskeletal proteins[J]. Biol Psychiatry , 2013, 73 (6) : 583–590. DOI:10.1016/j.biopsych.2012.08.012
[9] Tammimies K, Tapia-Páez I, Rüegg J, et al. The rs3743205 SNP is important for the regulation of the dyslexia candidate gene DYX1C1 by estrogen receptor β and DNA methylation[J]. Mol Endocrinol , 2012, 26 (4) : 619–629. DOI:10.1210/me.2011-1376
[10] Meng H, Smith SD, Hager K, et al. DCDC2 is associated with reading disability and modulates neuronal development in the brain[J]. Proc Natl Acad Sci USA , 2005, 102 (47) : 17053–17058. DOI:10.1073/pnas.0508591102
[11] Francks C, Paracchini S, Smith SD, et al. A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States[J]. Am J Hum Genet , 2004, 75 (6) : 1046–1058. DOI:10.1086/426404
[12] Marino C, Meng H, Mascheretti S, et al. DCDC2 genetic variants and susceptibility to developmental dyslexia[J]. Psychiatr Genet , 2012, 22 (1) : 25–30. DOI:10.1097/YPG.0b013e32834acdb2
[13] Powers NR, Eicher JD, Butter F, et al. Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment[J]. Am J Hum Genet , 2013, 93 (1) : 19–28. DOI:10.1016/j.ajhg.2013.05.008
[14] Zhang Y, Li J, Song S, et al. Association of DCDC2 polymorphisms with normal variations in reading abilities in a Chinese population[J]. PLoS One , 2016, 11 (4) : e0153603. DOI:10.1371/journal.pone.0153603
[15] Zhong R, Yang B, Tang H, et al. Meta-analysis of the association between DCDC2 polymorphisms and risk of dyslexia[J]. Mol Neurobiol , 2013, 47 (1) : 435–442. DOI:10.1007/s12035-012-8381-7
[16] Müller B, Wilcke A, Czepezauer I, et al. Association, characterisation and meta-analysis of SNPs linked to general reading ability in a German dyslexia case-control cohort[J]. Sci Rep , 2016, 6 : 27901. DOI:10.1038/srep27901
[17] Scerri TS, Morris AP, Buckingham L, et al. DCDC2, KIAA0319 and CMIP are associated with reading-related traits[J]. Biol Psychiatry , 2011, 70 (3) : 237–245. DOI:10.1016/j.biopsych.2011.02.005
[18] Newbury DF, Paracchini S, Scerri TS, et al. Investigation of dyslexia and SLI risk variants in reading-and language-impaired subjects[J]. Behav Genet , 2011, 41 (1) : 90–104. DOI:10.1007/s10519-010-9424-3
[19] Gabel LA, Gibson CJ, Gruen JR, et al. Progress towards a cellular neurobiology of reading disability[J]. Neurobiol Dis , 2010, 38 (2) : 173–180. DOI:10.1016/j.nbd.2009.06.019
[20] Darki F, Peyrard-Janvid M, Matsson H, et al. Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure[J]. Biol Psychiatry , 2012, 72 (8) : 671–676. DOI:10.1016/j.biopsych.2012.05.008
[21] Marino C, Scifo P, Della Rosa PA, et al. The DCDC2/intron 2 deletion and white matter disorganization:focus on developmental dyslexia[J]. Cortex , 2014, 57 : 227–243. DOI:10.1016/j.cortex.2014.04.016
[22] Giraud A, Ramus F. Neurogenetics and auditory processing in developmental dyslexia[J]. Curr Opin Neurobiol , 2013, 23 (1) : 37–42. DOI:10.1016/j.conb.2012.09.003
[23] Serrallach B, Groß C, Bernhofs V, et al. Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children[J]. Front Neurosci , 2016, 10 : 324.
[24] Eicher JD, Powers NR, Miller LL, et al. Characterization of the DYX2 locus on chromosome 6p22 with reading disability, language impairment, and IQ[J]. Hum Genet , 2014, 133 (7) : 869–881. DOI:10.1007/s00439-014-1427-3
[25] Velayos-Baeza A, Levecque C, Kobayashi K, et al. The dyslexia-associated KIAA0319 protein undergoes proteolytic processing with γ-secretase-independent intramembrane cleavage[J]. J Biol Chem , 2010, 285 (51) : 40148–40162. DOI:10.1074/jbc.M110.145961
[26] Peschansky VJ, Burbridge TJ, Volz AJ, et al. The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat[J]. Cereb Cortex , 2010, 20 (4) : 884–897. DOI:10.1093/cercor/bhp154
[27] Szalkowski CE, Fiondella CF, Truong DT, et al. The effects of Kiaa0319 knockdown on cortical and subcortical anatomy in male rats[J]. Int J Dev Neurosci , 2013, 31 (2) : 116–122. DOI:10.1016/j.ijdevneu.2012.11.008
[28] Marsh APL, Lukic V, Pope K, et al. Complete callosal agenesis, pontocerebellar hypoplasia, and axonal neuropathy due to AMPD2 loss[J]. Neurol Genet , 2015, 1 (2) : e16. DOI:10.1212/NXG.0000000000000014
[29] Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, et al. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia[J]. PLoS Genet , 2005, 1 (4) : e50. DOI:10.1371/journal.pgen.0010050
[30] Tran C, Wigg KG, Zhang K, et al. Association of the ROBO1 gene with reading disabilities in a family-based analysis[J]. Genes Brain Behav , 2014, 13 (4) : 430–438. DOI:10.1111/gbb.2014.13.issue-4
[31] Bates TC, Luciano M, Medland SE, et al. Genetic variance in a component of the language acquisition device:ROBO1 polymorphisms associated with phonological buffer deficits[J]. Behav Genet , 2011, 41 (1) : 50–57. DOI:10.1007/s10519-010-9402-9
[32] Mascheretti S, Riva V, Giorda R, et al. KIAA0319 and ROBO1:evidence on association with reading and pleiotropic effects on language and mathematics abilities in developmental dyslexia[J]. J Hum Genet , 2014, 59 (4) : 189–197. DOI:10.1038/jhg.2013.141
[33] Lamminmaki S, Massinen S, Nopola-Hemmi J, et al. Human ROBO1 regulates interaural interaction in auditory pathways[J]. J Neurosci , 2012, 32 (3) : 966–971. DOI:10.1523/JNEUROSCI.4007-11.2012
[34] Anthoni H, Zucchelli M, Matsson H, et al. A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia[J]. Hum Mol Genet , 2006, 16 (6) : 667–677. DOI:10.1093/hmg/ddm009
[35] Scerri TS, Darki F, Newbury DF, et al. The dyslexia candidate locus on 2p12 is associated with general cognitive ability and white matter structure[J]. PLoS One , 2012, 7 (11) : e50321. DOI:10.1371/journal.pone.0050321
[36] Wang HZ, Qin HD, Guo W, et al. New insights into the genetic mechanism of IQ in autism spectrum disorders[J]. Front Genet , 2013, 4 : 195.
[37] Platt MP, Adler WT, Mehlhorn AJ, et al. Embryonic disruption of the candidate dyslexia susceptibility gene homolog Kiaa0319-like results in neuronal migration disorders[J]. Neuroscience , 2013, 248 : 585–593. DOI:10.1016/j.neuroscience.2013.06.056
[38] Shao S, Kong R, Zou L, et al. The roles of genes in the neuronal migration and neurite outgrowth network in developmental dyslexia:single-and multiple-risk genetic variants[J]. Mol Neurobiol , 2016, 53 (6) : 3967–3975. DOI:10.1007/s12035-015-9334-8
[39] Lai CS, Fisher SE, Hurst JA, et al. A forkhead-domain gene is mutated in a severe speech and language disorder[J]. Nature , 2001, 413 (6855) : 519–523. DOI:10.1038/35097076
[40] Vernes SC, Newbury DF, Abrahams BS, et al. A functional genetic link between distinct developmental language disorders[J]. N Engl J Med , 2008, 359 (22) : 2337–2345. DOI:10.1056/NEJMoa0802828
[41] Sia GM, Clem RL, Huganir RL. The human language-associated gene SRPX2 regulates synapse formation and vocalization in mice[J]. Science , 2013, 342 (6161) : 987–991. DOI:10.1126/science.1245079
[42] Usui N, Co M, Harper M, et al. Sumoylation of FOXP2 regulates motor function and vocal communication through Purkinje cell development[J]. Biol Psychiatry , 2016 . DOI:10.1016/j.biopsych.2016.02.008
[43] Wilcke A, Ligges C, Burkhardt J, et al. Imaging genetics of FOXP2 in dyslexia[J]. Eur J Hum Genet , 2011, 20 (2) : 224–229.
[44] Chaly Y, Hostager B, Smith S, et al. Follistatin-like protein 1 and its role in inflammation and inflammatory diseases[J]. Immunol Res , 2014, 59 (1-3) : 266–272. DOI:10.1007/s12026-014-8526-z
[45] Song J, Teplova M, Ishibe-Murakami S, et al. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation[J]. Science , 2012, 335 (6069) : 709–712. DOI:10.1126/science.1214453
[46] Nott A, Cho S, Seo J, et al. HDAC2 expression in parvalbumin interneurons regulates synaptic plasticity in the mouse visual cortex[J]. Neuroepigenetics , 2015, 1 : 34–40. DOI:10.1016/j.nepig.2014.10.005
[47] Kong R, Shao S, Wang J, et al. Genetic variant in DIP2A gene is associated with developmental dyslexia in Chinese population[J]. Am J Med Genet B Neuropsychiatr Genet , 2016, 171 (2) : 203–208. DOI:10.1002/ajmg.b.32392
[48] Sanacora G, Banasr M. From pathophysiology to novel antidepressant drugs:glial contributions to the pathology and treatment of mood disorders[J]. Biol Psychiatry , 2013, 73 (12) : 1172–1179. DOI:10.1016/j.biopsych.2013.03.032
[49] Matsson H, Huss M, Persson H, et al. Polymorphisms in DCDC2 and S100B associate with developmental dyslexia[J]. J Hum Genet , 2015, 60 (7) : 399–401. DOI:10.1038/jhg.2015.37
[50] Ueda S, Negishi M, Katoh H. Rac GEF Dock4 interacts with cortactin to regulate dendritic spine formation[J]. Mol Biol Cell , 2013, 24 (10) : 1602–1613. DOI:10.1091/mbc.E12-11-0782
[51] Scerri TS, Paracchini S, Morris A, et al. Identification of candidate genes for dyslexia susceptibility on chromosome 18[J]. PLoS One , 2010, 5 (10) : e13712. DOI:10.1371/journal.pone.0013712
[52] Chen H, Xu J, Zhou Y, et al. Association study of stuttering candidate genes GNPTAB, GNPTG and NAGPA with dyslexia in Chinese population[J]. BMC Genet , 2015, 16 (1) : 7. DOI:10.1186/s12863-015-0172-5
[53] Einarsdottir E, Svensson I, Darki F, et al. Mutation in CEP63 co-segregating with developmental dyslexia in a Swedish family[J]. Hum Genet , 2015, 134 (11-12) : 1239–1248. DOI:10.1007/s00439-015-1602-1
[54] Mascheretti S, Facoetti A, Giorda R, et al. GRIN2B mediates susceptibility to intelligence quotient and cognitive impairments in developmental dyslexia[J]. Psychiatr Genet , 2015, 25 (1) : 9–20. DOI:10.1097/YPG.0000000000000068
[55] Poelmans G, Buitelaar JK, Pauls DL, et al. A theoretical molecular network for dyslexia:integrating available genetic findings[J]. Mol Psychiatry , 2010, 16 (4) : 365–382.
[56] Peterson RL, Pennington BF. Developmental dyslexia[J]. Annu Rev Clin Psychol , 2015, 11 : 283–307. DOI:10.1146/annurev-clinpsy-032814-112842
[57] Peterson RL, Pennington BF. Developmental dyslexia[J]. The Lancet , 2012, 379 (9830) : 1997–2007. DOI:10.1016/S0140-6736(12)60198-6
[58] Vaughn S, Fletcher JM. Response to intervention with secondary school students with reading difficulties[J]. J Learn Disabil , 2012, 45 (3) : 244–256. DOI:10.1177/0022219412442157