癫癎是临床常见的神经系统疾病,我国的癫癎患病率约为7.0‰。癫癎发作是由于各种先天或后天因素引起大脑神经元反复同步放电所致。随着分子生物学的飞速发展,遗传因素被证明在癫癎发病机制中占据重要位置,50%以上的癫癎存在遗传学基础[1]。癫癎的发病与多种基因突变有关,不同基因突变所致癫癎对药物的反应不同。因此,根据基因检测结果对癫癎患者进行精准治疗,是一种新的趋势。本文结合近期文献对癫癎致病基因及其用药指导进行综述。
1 电压依赖离子通道致病基因 1.1 钠离子通道多种编码电压门控性钠离子通道的基因与癫癎发病有关,主要是编码钠离子通道α亚基的基因SCN1A、SCN2A,SCN8A和β亚基的基因SCN1B[2]。研究表明,SCN1A、SCN2A、SCN8A和SCN1B等基因的突变可导致全面性癫癎伴热性惊厥附加症(generalized epilepsy with febrile seizure plus, GEFS+)、Dravet综合症(Dravet syndrome, DS)、良性家族性婴儿惊厥(benign familial infantile convulsion, BFIC)等[3]。其中,GEFS+的家系研究中已发现40多种SCN1A突变以及多种SCN1B突变。约80%的DS患者有SCN1A基因突变,突变类别高达300多种[4]。钠离子通道在神经元膜动作电位起始及维持阶段发挥作用,SCN1A的构象异变可引起神经元兴奋性突触后电位发放过度[5],既而抑制性中间神经元活性降低,皮层网络兴奋性增加,导致癎样放电发生[6]。SCN1A突变所致癫癎综合征患者,使用左乙拉西坦及生酮饮食治疗取得较为理想的效果[7]。据报道一种抑制食欲的药物氟苯丙胺对于DS有一定的疗效,作用机制有待进一步探究[8]。值得注意的是,对于SCN1A突变引起的癫癎性脑病,治疗时应避免使用卡马西平、拉莫三嗪、苯妥英钠等钠离子通道阻滞剂,因为钠离子通道基因突变可导致药物作用位点发生构象或功能改变,药物无法结合预定位点,故难以抑制神经元过度放电,从而导致药物抵抗,甚至加重癫癎发作[3]。而SCN2A突变引发的癫癎可选用卡马西平、苯妥英钠治疗,而且与作用于钠离子通道的抗心律失常药物美西律联合可取得较好的临床疗效[9]。因此,对癫癎患者做相关基因突变的筛查有助于正确用药。
1.2 钾离子通道钾离子通道能调节神经细胞兴奋性和离子平衡。钾离子通道种类很多,主要有电压门控钾通道(voltage-gated K+ channels, kv)、钙激活性钾通道(Ca2+ -activated K+ channels, kca)、内向整流型钾离子通道(nwardly rectifying K+ channels, kir)3种与癫癎发病相关[10]。编码kv的KCNQ2、KCNQ3基因突变可导致良性家族性新生儿惊厥(benign familial neonatal seizures, BFNS)和早期婴儿型癫癎性脑病(early infantile epileptic encephalopathy, EIEE)[11-12]。60%~70%的BFNS与KCNQ2、KCNQ3突变有关,相关突变种类达50余种[10]。KCNQ2和KCNQ3基因编码的蛋白协同构成M通道[13]。M通道是一个缓慢激活和去激活的钾通道,在调节神经元的兴奋性中起着重要作用,因此KCNQ2和KCNQ3突变会导致BFNS和EIEE[14]。对于钾离子通道异变引起的癫癎,理论上应使用调节钾离子通道的药物,但大多数抗癫癎药物没有或者仅有轻微调节钾离子通道的作用[15]。如BFNS和EIEE的一线治疗药物苯妥英钠、卡马西平均属于钠通道阻滞剂[16]。瑞替加滨是首个钾离子通道开放剂,其主要作用位点是KCNQ2、KCNQ3,是新的癫癎精准治疗药物[17-18]。KCNT1基因属于kca,编码钠激活钾通道亚基,被认为在离子传导和神经递质释放中起作用[19]。目前发现KCNT1基因与3种难治性癫癎相关,分别是常染色体显性遗传夜间额叶癫癎、婴儿部分性游走性癫癎和大田原综合征[20]。KCNT1基因突变所致的癫癎对传统抗癫癎药物敏感性不高,钾离子通道阻滞剂奎尼丁可减缓KCNT1突变所致的功能障碍[21]。KCNJ11基因是kir的一种,已证明是DEND综合征(developmental delay, epilepsy and neonatal diabetes syndrome, DEND)的致病基因,目前尚无特效的药物治疗[22]。
1.3 钙离子通道钙离子通道是与儿童失神性癫癎(childhood absence epilepsy, CAE)有关的离子通道,主要包括P/Q型钙通道、T型钙通道和R型钙通道等[10]。CACNA1A基因编码P/Q型钙通道Cav2.1,是CAE的易感基因,发生突变时会选择性降低兴奋性或抑制性突触神经递质释放,导致Cav2.1通道的电流幅度降低和功能减弱[23]。Cav2.1通道功能为抑制神经元兴奋,抑制作用减弱时神经元放电增多,引起癎样放电[24]。CACNA1H基因编码T型钙通道Cav3.2,该基因也是CAE的易感基因,突变导致神经元的电性质发生变化、基因表达增加,Cav3.2通道钙离子内流增多,神经元兴奋性增强,从而引起CAE的发生[25]。治疗CAE的一线药物丙戊酸钠、乙琥胺和托吡酯可作用于丘脑的T型钙通道而发挥作用[26]。CACNB4是编码钙通道β4亚基的基因,发生突变时调节G蛋白、抑制钙通道的作用减弱,使得钙通道电流峰值增加,最终引起神经元兴奋性增强,亦可引起CAE和青少年肌阵挛癫癎[27]。
1.4 氯离子通道氯离子通道是广泛分布于机体细胞膜及细胞质膜的跨膜蛋白,是与癫癎相关的阴离子通道。氯离子通道分为6类,其中电压门控氯离子通道(voltage-gated chloride channels, CLC)和受体门控氯离子通道与癫癎发病有关。CLCN2编码电压门控氯离子通道CLC-2,能调控细胞内氯离子的浓度,该基因突变曾一度被认为是癫癎发病的危险因素,但目前尚未发现该基因突变导致癫癎的确切证据[24]。受体门控离子通道主要受抑制性神经递质GABA调控,将在下文详述。
2 配体门控离子通道致病基因 2.1 烟碱型乙酰胆碱受体烟碱型乙酰胆碱受体(nicotinic acetylcholine receptors, nAChR)是一种配体门控通道,由4种亚基构成,它的构变与常染色体显性遗传夜间额叶癫癎(autosomal dominant nocturnal frontal lobe epilepsy, ANDFLE)有关[28]。nAChR异变位点主要位于α2、α4、β2的疏水跨膜区,含有α2和β2亚基的烟碱受体广泛分布于大脑,但在突触传递以及生长发育所起的作用还不明确[29]。卡马西平或奥卡西平治疗ANDFLE患者取得满意的效果,可能与调节配体门控通道特别是nAChR有关[30]。
2.2 A型γ-氨基丁酸受体A型γ-氨基丁酸受体是中枢神经系统主要的抑制性神经递质受体,是一类介导快速抑制的异五聚体氯离子特异性配体门控性离子通道[31]。GABA与GABAA受体结合后通过控制氯离子内流使神经元超级化而发挥抑制神经元兴奋性的作用。与癫癎相关的突变主要有GABRA1、GABRG2、GABRB3等。GABRA1基因编码GABAA受体α1亚基,突变使GABAA受体结构发生变化,无法与GABA正常结合,抑制神经元放电的作用减弱,从而激发癎样放电[32]。Johannesen等[33]指出该突变与遗传性全面性癫癎有关。GABRG2基因编码GABAA受体β2亚基,目前已发现12个GABRG2突变导致遗传性癫癎如CAE和热性惊厥(febrile seizure, FS)[34]。GABRB3编码GABAA受体β3亚基,突变影响了GABAA受体β3亚基的正常功能,因此通道电流减少,对神经元的抑制作用减弱,神经元兴奋性增强,导致CAE发生[35]。GABRB3突变也与其他类型癫癎的发病有关[36]。上述基因突变引起的全面性癫癎可根据发作类型选择相应治疗,如CAE发作可选用丙戊酸钠或乙琥胺;强直-阵挛发作可选用苯巴比妥或卡马西平;肌阵挛失张力发作可选择丙戊酸钠、卡马西平或生酮饮食治疗。有动物实验表明,根据GABAA受体的改变而使用相应GABAA受体激动剂可取得一定效果[37]。
3 与酶相关的基因ALDH7A1是吡哆醇(维生素B6)依赖性癫癎(pyridoxine dependent epilepsy, PDE)的致病基因[38]。维生素B6是由同效维生素吡哆醇、吡哆醛、吡哆胺及其相应的磷酸化合物磷酸吡哆醇、磷酸吡哆醛(pyridoxal phosphate, PLP)和磷酸吡哆胺共6种物质组成[39]。其中PLP与赖氨酸的代谢有关。赖氨酸在体内分解为Δ1-四氢吡啶-6-羧酸(δ 1-piperideine-6-carboxylic acid, P6C)和α-氨基己二酸半醛脱氢酶(α-aminoadipic semialdehyde, α-AASA),两者处于自发平衡的状态[40]。P6C与α-AASA反应生成α-氨基己二酸(α-AAA),该过程需要ALDH7A1编码的脱氢酶参与[41]。ALDH7A1突变导致P6C和α-AASA堆积,多余的P6C与PLP发生反应,造成PLP缺乏或耗竭,而PLP是吡哆醇的唯一活性形式,因此吡哆醇水平随之降低[42-43]。PDE患者需终生服用吡哆醇,PLP作为吡哆醇的前体也可用于治疗PDE;限制赖氨酸的摄入对于PDE也具有一定的疗效[44-45]。磷酸吡哆醇和磷酸吡哆胺在磷酸吡哆醇(胺)氧化酶(pyridoxine-5-phosphate oxidase, PNPO)的催化下生成PLP,PLP能进入中枢神经系统发挥作用[46];而且PLP参与抑制性神经递质GABA的生成。因此,PNPO突变导致体内尤其是中枢神经系统PLP生成不足及GABA减少,可引起新生儿期严重的癫癎性脑病[47]。PNPO缺乏的病人采用常规抗癫癎药物很难控制癫癎发作,使用吡哆醇可部分控制癎性发作,需终生补充PLP[48]。
4 溶质携带子家族的相关基因溶质携带子家族与癫癎发病相关的基因主要有SCL2A1、SLC1A3和SLC6A1。SCL2A1编码一种葡萄糖转运因子Ⅰ(glucose transporter 1, GLUT1),其突变可导致葡萄糖转运因子Ⅰ缺乏综合征(glucose transporter 1 deficiency syndrome, GLUT1-DS)。GLUT1-DS最主要表现为癫癎,但传统抗癫癎药物疗效不佳,生酮饮食是唯一有肯定疗效的治疗方法[49]。SLC1A3编码人兴奋性氨基酸转运蛋白1(excitatory amino acid transporter-1, EAAT1),Jen等[50]证实谷氨酸作为兴奋性神经递质从神经元释放并粘附在相邻神经元的受体蛋白上发挥信号传递功能,然后谷氨酸与受体分离,最后被EAAT1清除,因此SLC1A3突变可引起谷氨酸堆积在神经元之间,导致神经元过度兴奋继而引起癫癎发作。Mishra等[51]实验证明,一种神经活性雄激素类固醇脱氢表雄酮能够显著增加谷氨酸转运体表达,可作为谷氨酸异常所致癫癎的治疗靶点。SLC6A1被认为与肌阵挛失张力发作癫癎有关,编码GAT-1蛋白,该蛋白是γ-氨基丁酸转运蛋白质之一,也负责突触GABA再摄取[52-53]。SLC6A1突变发生后,γ-氨基丁酸转运蛋白1受到干扰,影响γ-氨基丁酸水平,导致癫癎发生[54]。治疗方面,生酮饮食对SLC6A1突变引发的癫癎有确切疗效[55]。
5 其他致病基因 5.1 结节性硬化症相关基因结节性硬化症(tuberous sclerosis complex, TSC)相关基因包括TSC1、TSC2、TSC3等,其中TSC1、TSC2突变被证实可引起TSC[56]。TSC主要表现为多形式的癫癎发作。TSC相关基因编码的蛋白参与mTOR通路的调控,mTOR在脑神经发育中起着举足轻重的地位,尤其影响了神经元形态的建立和突触的可塑性[57]。TSC相关基因突变时,mTOR通道过度激活,动作电位和神经兴奋性增加,导致异常持久兴奋性突触电流和癎样放电发生[58]。雷帕霉素作为mTOR抑制剂不仅可纠正超活性的mTOR信号,也可诱导自噬,恢复正常mTOR信号水平,用于TSC治疗取得了不错的效果[59-60]。另一种mTOR的抑制剂依维莫司在临床试验研究中也能较好地控制癫癎发作,且已获CHMP(欧洲药品管理局人用医药产品委员会)批准用于TSC相关难治性癫癎的治疗[61]。
5.2 细胞粘附分子基因细胞黏附分子基因PCDH19可导致EIEE[62],该基因突变改变细胞的黏附功能从而影响细胞的迁移、增殖和生长,最终引起癫癎发生[63]。治疗可选用左乙拉西坦,丙戊酸钠,苯巴比妥、拉莫三嗪等一线抗癫癎药物,但效果并不理想[64];有文献报道使用糖皮质激素可以得到不错疗效[65]。
5.3 影响细胞跨膜转运的基因STXBP1可导致EIEE。STXBP1基因编码的蛋白结合蛋白可能在神经递质释放、突触融合、蛋白跨膜附着受体的过程中发挥作用[66]。该基因突变时,突触的代谢和传输受到影响,引起癫癎发生。该基因突变导致的癫癎形式多样,因此,治疗时可选取常用的抗癫癎药物如苯巴比妥、丙戊酸和氨己烯酸等[67]。
5.4 其他还有一些尚未被归类的基因如DEPDC5,其突变与病灶多变的家族性局灶性癫癎相关[68]。DEPDC5是GATOR1复合物(DEPDC5、NPRL2和NPRL23)的一部分,能够调节mTOR通路;突变时,无法正常调控mTOR活性,细胞生长增殖发生异常,进而皮层发育不良,最终引起致癎灶产生[69]。因DFPDC5与TSC有相似的作用通路,治疗药物除左乙拉西坦和氨己烯酸外,也可考虑选用针对mTOR作用靶点的雷帕霉素和依维莫司治疗[70]。
6 小结与展望与癫癎相关的基因研究取得了很大的进展,可为癫癎的精准治疗提供有力参考。但癫癎的致病机制十分复杂,同一种突变可产生不同的临床表现,同一临床表现涉及的突变基因也可不同,这说明从基因角度对癫癎进行诊疗仍有很多问题亟待解决,需要对基因型-表型-药物疗效进行深入研究,为更多的癫癎患者带来福音。
[1] |
Pal DK, Pong AW, Chung WK. Genetic evaluation and counseling for epilepsy[J]. Nat Rev Neurol, 2010, 6(8): 445-453. ( ![]() |
[2] |
Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family[J]. Genome Biol, 2003, 4(3): 207. DOI:10.1186/gb-2003-4-3-207 ( ![]() |
[3] |
张丽敏, 康熙雄, 张国军. 钠离子通道基因SCN1A、SCN2A、SCN1B突变与癫癎[J]. 中国医药生物技术, 2013, 8(1): 62-65. ( ![]() |
[4] |
Lossin C. A catalog of SCN1A variants[J]. Brain Devel, 2009, 31(2): 114-130. DOI:10.1016/j.braindev.2008.07.011 ( ![]() |
[5] |
Kanellopoulos AH, Matsuyama A. Voltage-gated sodium channels and pain-related disorders[J]. Clin Sci (Lond), 2016, 130(24): 2257-2265. DOI:10.1042/CS20160041 ( ![]() |
[6] |
李丹, 黄绍平, 宋婷婷, 等. SCN1A基因突变阳性的Dravet综合征患儿的临床特征分析[J]. 西安交通大学学报(医学版), 2016, 37(6): 841-845. ( ![]() |
[7] |
Chapman KE, Specchio N, Shinnar S, et al. Seizing control of epileptic activity can improve outcome[J]. Epilepsia, 2015, 56(10): 1482-1485. DOI:10.1111/epi.13109 ( ![]() |
[8] |
Wilmshurst JM, Berg AT, Lagae L, et al. The challenges and innovations for therapy in children with epilepsy[J]. Nat Rev Neurol, 2014, 10(5): 249-260. DOI:10.1038/nrneurol.2014.58 ( ![]() |
[9] |
Dravet C, Oguni H. Dravet syndrome (severe myoclonic epilepsy in infancy)[J]. Handb Clin Neurol, 2013, 111: 627-633. DOI:10.1016/B978-0-444-52891-9.00065-8 ( ![]() |
[10] |
孔玮晶, 姜玉武. 遗传相关性癫癎离子通道与遗传性癫癎[J]. 中国实用儿科杂志, 2015, 30(7): 481-487. ( ![]() |
[11] |
李宁, 陈言钊, 周克英. 儿童热性惊厥临床特征及其变化趋势[J]. 中国当代儿科杂志, 2015, 17(2): 176-179. DOI:10.7499/j.issn.1008-8830.2015.02.014 ( ![]() |
[12] |
Cooper EC. Made for "anchorin":Kv7.2/7.3 (KCNQ2/KCNQ3) channels and the modulation of neuronal excitability in vertebrate axons[J]. Semin Cell Dev Biol, 2010, 22(2): 185-192. ( ![]() |
[13] |
Orhan G, Bock M, Schepers D, et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy[J]. Ann Neurol, 2014, 75(3): 382-394. DOI:10.1002/ana.24080 ( ![]() |
[14] |
Millichap JJ, Park KL, Tsuchida T, et al. KCNQ2 encephalopathy:Features, mutational hot spots, and ezogabine treatment of 11 patients[J]. Neurol Genet, 2016, 2(5): e96. DOI:10.1212/NXG.0000000000000096 ( ![]() |
[15] |
Soldovieri MV, Castaldo P, Iodice L, et al. Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions[J]. J Biol Chem, 2006, 281(1): 418-428. DOI:10.1074/jbc.M510980200 ( ![]() |
[16] |
Zhang X, Jakubowski M, Buettner C, et al. Ezogabine (KCNQ2/3 channel opener) prevents delayed activation of meningeal nociceptors if given before but not after the occurrence of cortical spreading depression[J]. Epilepsy Behav, 2013, 28(2): 243-248. DOI:10.1016/j.yebeh.2013.02.029 ( ![]() |
[17] |
Nassoiy SP, Byron KL, Majetschak M. Kv7 voltage-activated potassium channel inhibitors reduce fluid resuscitation requirements after hemorrhagic shock in rats[J]. J Biomed Sci, 2017, 24(1): 8. DOI:10.1186/s12929-017-0316-1 ( ![]() |
[18] |
王丹, 高颖, 刘婷立, 等. 抗癫癎新药瑞替加滨[J]. 中国新药杂志, 2012, 21(5): 467-469. ( ![]() |
[19] |
Qu J, Zhang Y, Yang ZQ, et al. Gene-wide tagging study of the association between KCNT1 polymorphisms and the susceptibility and efficacy of genetic generalized epilepsy in Chinese population[J]. CNS Neurosci Ther, 2014, 20(2): 140-146. DOI:10.1111/cns.2014.20.issue-2 ( ![]() |
[20] |
Lim CX, Ricos MG, Dibbens LM. KCNT1 mutations in seizure disorders:the phenotypic spectrum and functional effects[J]. J Med Genet, 2016, 53(4): 217-225. DOI:10.1136/jmedgenet-2015-103508 ( ![]() |
[21] |
Yang B, Gribkoff VK, Pan J, et al. Pharmacological activation and inhibition of Slack (Slo2.2) channels[J]. Neuropharmacology, 2006, 51(4): 896-906. DOI:10.1016/j.neuropharm.2006.06.003 ( ![]() |
[22] |
Ozsu E, Giri D, Seymen KG, et al. Successful transition to sulfonylurea therapy in two Iraqi siblings with neonatal diabetes mellitus and iDEND syndrome due to ABCC8 mutation[J]. J Pediatr Endocrinol Metab, 2016, 29(12): 1403-1406. ( ![]() |
[23] |
Strupp M, Kalla R, Freilinger T, et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia——a comment[J]. Brain, 2005, 128(Pt6): E32. ( ![]() |
[24] |
姜玉武, 谢涵. 特发性全面性癫癎的遗传学研究进展[J]. 北京大学学报(医学版), 2013, 45(2): 186-191. ( ![]() |
[25] |
Peloquin JB, Khosravani H, Barr W, et al. Functional analysis of Cav 3.2 T-type calcium channel mutations linked to childhood absence epilepsy[J]. Epilepsia, 2006, 47(3): 655-658. DOI:10.1111/epi.2006.47.issue-3 ( ![]() |
[26] |
Cain SM, Snutch TP. Voltage-gated calcium channels and disease[J]. Biofactors, 2011, 37(3): 197-205. DOI:10.1002/biof.v37.3 ( ![]() |
[27] |
Weltzin MM, Lindstrom JM, Lukas RJ, et al. Distinctive effects of nicotinic receptor intracellular-loop mutations associated with nocturnal frontal lobe epilepsy[J]. Neuropharmacology, 2015, 102: 158-173. ( ![]() |
[28] |
Shiba Y, Mori F, Yamada J, et al. Spontaneous epileptic seizures in transgenic rats harboring a human ADNFLE missense mutation in the β2-subunit of the nicotinic acetylcholine receptor[J]. Neurosci Res, 2015, 100: 46-54. DOI:10.1016/j.neures.2015.06.003 ( ![]() |
[29] |
Nichols WA, Henderson BJ, Marotta CB, et al. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity α4β2, and increases α5α4β2, nicotinic receptor surface expression[J]. PLoS One, 2016, 11(6): e0158032. DOI:10.1371/journal.pone.0158032 ( ![]() |
[30] |
Becchetti A, Aracri P, Meneghini S, et al. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy[J]. Front Physiol, 2015, 6: 22. ( ![]() |
[31] |
Maljevic S, Krampfl K, Cobilanschi J, et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy[J]. Ann Neurol, 2006, 59(6): 983-987. DOI:10.1002/ana.v59:6 ( ![]() |
[32] |
Hirose S. Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy[J]. Prog Brain Res, 2014, 213: 55-85. DOI:10.1016/B978-0-444-63326-2.00003-X ( ![]() |
[33] |
Johannesen K, Marini C, Pfeffer S, et al. Phenotypic spectrum of GABRA1:From generalized epilepsies to severe epileptic encephalopathies[J]. Neurology, 2016, 87(11): 1140-1151. DOI:10.1212/WNL.0000000000003087 ( ![]() |
[34] |
Gurba KN, Hernandez CC, Hu N, et al. GABRB3 mutation, G32R, associated with childhood absence epilepsy alters α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor expression and channel gating[J]. J Biol Chem, 2012, 287(15): 12083-12097. DOI:10.1074/jbc.M111.332528 ( ![]() |
[35] |
Tanaka M, Olsen RW, Medina MT, et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy[J]. Am J Human Genet, 2008, 82(6): 1249-1261. DOI:10.1016/j.ajhg.2008.04.020 ( ![]() |
[36] |
Reid CA, Kim T, Phillips AM, et al. Multiple molecular mechanisms for a single GABAA mutation in epilepsy[J]. Neurology, 2013, 80(11): 1003-1008. DOI:10.1212/WNL.0b013e3182872867 ( ![]() |
[37] |
Kang JQ, Shen W, Macdonald RL. Two molecular pathways (NMD and ERAD) contribute to a genetic epilepsy associated with the GABA(A) receptor GABRA1 PTC mutation, 975delC, S326fs328X[J]. J Neurosci, 2009, 29(9): 2833-2844. DOI:10.1523/JNEUROSCI.4512-08.2009 ( ![]() |
[38] |
Hatch J, Coman D, Clayton P, et al. Normal neurodevelopmental outcomes in PNPO deficiency:a case series and literature review[J]. JIMD Rep, 2016, 26: 91-97. ( ![]() |
[39] |
杨志仙, 薛娇. 维生素B6相关性癫癎[J]. 中华实用儿科临床杂志, 2016, 31(24): 1841-1848. DOI:10.3760/cma.j.issn.2095-428X.2016.24.001 ( ![]() |
[40] |
Mills PB, Camuzeaux SS, Footitt EJ, et al. Epilepsy due to PNPO mutations:genotype, environment and treatment affect presentation and outcome[J]. Brain, 2014, 137(5): 1350-1360. DOI:10.1093/brain/awu051 ( ![]() |
[41] |
Wang HS, Kuo MF, Chou ML, et al. Pyridoxal phosphate is better than pyridoxine for controlling idiopathic intractable epilepsy[J]. Arch Dis Child, 2005, 90(5): 512-515. DOI:10.1136/adc.2003.045963 ( ![]() |
[42] |
Gospe SM Jr. Pyridoxine-dependent seizures:new genetic and biochemical clues to help with diagnosis and treatment[J]. Curr Opin Neurol, 2006, 19(2): 148-153. DOI:10.1097/01.wco.0000218230.81301.12 ( ![]() |
[43] |
Zhou Y, Wu H, Xu S, et al. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by PNPO phosphazane ligands[J]. Dalton Trans, 2015, 44(20): 9545-9550. DOI:10.1039/C5DT00801H ( ![]() |
[44] |
Hunt AD Jr, Stokes J Jr, McCrory WW, et al. Pyridoxine dependency:report of a case of intractable convulsions in an infant controlled by pyridoxine[J]. Pediatrics, 1954, 13(2): 140-145. ( ![]() |
[45] |
Bagci S, Zschocke J, Hoffmann GF, et al. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy[J]. Arch Dis Child Fetal Neonatal Ed, 2008, 93(2): F151-152. ( ![]() |
[46] |
薛姣, 杨志仙, 张月华, 等. 磷酸吡哆醇(胺)氧化酶缺乏症2例的临床特征及基因突变分析[J]. 中华实用儿科临床杂志, 2016, 31(16): 1265-1269. DOI:10.3760/cma.j.issn.2095-428X.2016.16.019 ( ![]() |
[47] |
杨志仙, 秦炯. 吡哆醇依赖性癫癎的临床及分子遗传学研究进展[J]. 中华儿科杂志, 2013, 51(11): 867-870. DOI:10.3760/cma.j.issn.0578-1310.2013.11.015 ( ![]() |
[48] |
Kuo MF, Wang HS. Pyridoxal phosphate-responsive epilepsy with resistance to pyridoxine[J]. Pediatr Neurol, 2002, 26(2): 146-147. DOI:10.1016/S0887-8994(01)00357-5 ( ![]() |
[49] |
Rammpettersen A, Stabell KE, Nakken KO, et al. Does ketogenic diet improve cognitive function in patients with GLUT1-DS? A 6-to 17-month follow-up study[J]. Epilepsy Behav, 2014, 39: 111-115. DOI:10.1016/j.yebeh.2014.08.015 ( ![]() |
[50] |
Jen JC, Wan J, Palos TP, et al. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures[J]. Neurology, 2005, 65(4): 529-534. DOI:10.1212/01.WNL.0000172638.58172.5a ( ![]() |
[51] |
Mishra M, Singh R, Mukherjee S, et al. Dehydroepiandrosterone's antiepileptic action in FeCl3-induced epileptogenesis involves upregulation of glutamate transporters[J]. Epilepsy Res, 2013, 106(1-2): 83-91. DOI:10.1016/j.eplepsyres.2013.06.008 ( ![]() |
[52] |
Palmer S, Towne MC, Pearl PL, et al. SLC6A1 mutation and ketogenic diet in epilepsy with myoclonic-atonic seizures[J]. Pediatr Neurol, 2016, 64: 77-79. DOI:10.1016/j.pediatrneurol.2016.07.012 ( ![]() |
[53] |
Carvill GL, McMahon JM, Schneider A, et al. Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonic-atonic seizures[J]. Am J Hum Genet, 2015, 96(5): 808-815. DOI:10.1016/j.ajhg.2015.02.016 ( ![]() |
[54] |
Enoch MA, Hodgkinson CA, Shen PH, et al. GABBR1 and SLC6A1, two Genes involved in modulation of GABA synaptic transmission, influence risk for alcoholism:results from three ethnically diverse populations[J]. Alcohol Clin Exp Res, 2016, 40(1): 93-101. DOI:10.1111/acer.12929 ( ![]() |
[55] |
Schousboe A, Madsen KK, Barkerhaliski ML, et al. The GABA synapse as a target for antiepileptic drugs:a historical overview focused on GABA transporters[J]. Neurochem Res, 2014, 39(10): 1980-1987. DOI:10.1007/s11064-014-1263-9 ( ![]() |
[56] |
Crino PB. The mTOR signalling cascade:paving new roads to cure neurological disease[J]. Nat Rev Neurol, 2016, 12(7): 379-392. DOI:10.1038/nrneurol.2016.81 ( ![]() |
[57] |
Abe N, Borson SH, Gambello MJ, et al. Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves[J]. J Biol Chem, 2010, 285(36): 28034-28043. DOI:10.1074/jbc.M110.125336 ( ![]() |
[58] |
Wang Y, Greenwood JS, Calcagnotto ME, et al. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1[J]. Ann Neurol, 2007, 61(2): 139-152. DOI:10.1002/ana.v61:2 ( ![]() |
[59] |
Meng XF, Yu JT, Song JH, et al. Role of the mTOR signaling pathway in epilepsy[J]. J Neurol Sci, 2013, 332(1-2): 4-15. DOI:10.1016/j.jns.2013.05.029 ( ![]() |
[60] |
Tyndall J. Everolimus alters white matter diffusion in tuberous sclerosis complex[J]. Neurology, 2012, 78(8): 526-531. DOI:10.1212/WNL.0b013e318247ca8d ( ![]() |
[61] |
Krueger DA, Wilfong AA, Holland-Bouley K, et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex[J]. Ann Neurol, 2013, 74(5): 679-687. DOI:10.1002/ana.v74.5 ( ![]() |
[62] |
Jie W, Lin ZJ, Liu L, et al. Epilepsy-associated genes[J]. Seizure, 2017, 44: 11-20. DOI:10.1016/j.seizure.2016.11.030 ( ![]() |
[63] |
Emond MR, Biswas S, Blevins CJ, et al. A complex of Protocadherin-19 and N-cadherin mediates a novel mechanism of cell adhesion[J]. J Cell Biol, 2011, 195(7): 1115-1121. DOI:10.1083/jcb.201108115 ( ![]() |
[64] |
Lu Z, Reddy MV, Liu J, et al. Molecular architecture of contactin-associated protein-like 2 (CNTNAP2) and its interaction with contactin 2 (CNTN2)[J]. J Biol Chem, 2016, 291(46): 24133-24147. DOI:10.1074/jbc.M116.748236 ( ![]() |
[65] |
Higurashi N, Takahashi Y, Kashimada A, et al. Immediate suppression of seizure clusters by corticosteroids in PCDH19 female epilepsy[J]. Seizure, 2015, 27: 1-5. DOI:10.1016/j.seizure.2015.02.006 ( ![]() |
[66] |
Gupta A. STXBP1-related EOEE-early onset epilepsy and encephalopathy, or is it early onset epileptic encephalopathy[J]. Epilepsy Currents, 2016, 16(5): 302-304. DOI:10.5698/1535-7511-16.5.302 ( ![]() |
[67] |
Stamberger H, Nikanorova M, Willemsen MH, et al. STXBP1 encephalopathy:A neurodevelopmental disorder including epilepsy[J]. Neurology, 2016, 86(10): 954-962. DOI:10.1212/WNL.0000000000002457 ( ![]() |
[68] |
Davies J, Zachariades E, Rogers-Broadway KR, et al. Elucidating the role of DEPTOR in Alzheimer's disease[J]. Int J Mol Med, 2014, 34(5): 1195-1200. DOI:10.3892/ijmm.2014.1895 ( ![]() |
[69] |
Perucca P, Scheffer IE, Harvey AS, et al. Real-world utility of whole exome sequencing with targeted gene analysis for focal epilepsy[J]. Epilepsy Research, 2017, 131: 1-8. DOI:10.1016/j.eplepsyres.2017.02.001 ( ![]() |
[70] |
Carvill GL, Crompton DE, Regan BM, et al. Epileptic spasms are a feature of DEPDC5 mTORopathy[J]. Neurol Genet, 2015, 1(2): e17. DOI:10.1212/NXG.0000000000000016 ( ![]() |