中国当代儿科杂志  2017, Vol. 19 Issue (12): 1297-1300  DOI: 10.7499/j.issn.1008-8830.2017.12.014

引用本文  

王婕, 王凤, 桂永浩. 孕前糖尿病致先天性心脏病的机制研究进展[J]. 中国当代儿科杂志, 2017, 19(12): 1297-1300.
WANG Jie, WANG Feng, GUI Yong-Hao. Research advances in the mechanism of congenital heart disease induced by pregestational diabetes mellitus[J]. Chinese Journal of Contemporary Pediatrics, 2017, 19(12): 1297-1300.

基金项目

国家重点基础研究发展计划(973计划)(2013CB945401)

作者简介

王婕, 女, 硕士研究生

文章历史

收稿日期:2017-09-11
接受日期:2017-10-11
孕前糖尿病致先天性心脏病的机制研究进展
王婕 , 王凤     综述, 桂永浩     审校    
复旦大学附属儿科医院心血管科, 上海 200032
摘要:先天性心脏病(CHD)是目前最常见的出生缺陷,其病因复杂,涉及遗传因素和环境因素的共同作用。其中,母亲孕前糖尿病与胎儿CHD的发生具有显著的相关性,而其具体的诱发机制尚不明确。该综述总结了孕前糖尿病致CHD的分子机制的研究进展。
关键词孕前糖尿病    先天性心脏病    分子机制    
Research advances in the mechanism of congenital heart disease induced by pregestational diabetes mellitus
WANG Jie , WANG Feng , GUI Yong-Hao     
Department of Cardiovascular Medicine, Children's Hospital of Fudan University, Shanghai 200023, China
Abstract: Congenital heart disease (CHD) is the most common birth defect at present and has a complex etiology which involves the combined effect of genetic and environmental factors. Pregestational diabetes mellitus is significantly associated with the development of CHD, but the detailed mechanism remains unknown. This article reviews the research advances in the molecular mechanism of CHD caused by pregestational diabetes mellitus.
Keywords: Pregestational diabetes mellitus    Congenital heart disease    Molecular mechanism    

先天性心脏病(congenital heart disease, CHD)是一组累及心血管系统的出生缺陷。活产儿中CHD患病率约为0.8%~1%[1-2],是最常见的出生缺陷。CHD患儿的心血管系统在胚胎时期发育异常,出现结构畸形,导致患儿体内体循环与肺循环血供及氧含量改变,临床表现为喂养困难、乏力、紫绀、反复肺炎等,严重危害儿童健康[3]

CHD的发病原因复杂,遗传因素(包括染色体畸变[4]、编码区[5]和非编码调控区突变[6]等)和环境因素(如叶酸缺乏[7]、高同型半胱氨酸血症[8]、维生素E摄入增加[9]、暴露于酒精[10]、锂盐[11]等)均可干扰有序的心血管发育过程,引起心脏畸形。其中,母孕前糖尿病(pregestational diabetes mellitus, PGDM)是引起胎儿CHD发病的重要环境因素之一[12]。Hoang等[13]的大样本研究显示,PGDM患者后代中,CHD发病率为普通人群的3.25倍,其中永存动脉干的发病率比更是高达13.25,与其他相关研究结果接近[14-16],证实PGDM为胎儿CHD发病的危险因素。

在我国,孕妇中PGDM的患病率约为0.5%[17]。据Yang等[18]报道,我国20岁以上的女性中糖尿病患病率为8.8%,魏玉梅等[19]的研究显示我国PGDM漏诊率可高达67.8%,因此我国PGDM实际患病率可能更高。随着我国糖尿病发病率的增加[18],PGDM患者群体日益增大,PGDM已成为CHD发病的重要危险因素,但PGDM引起CHD的具体机制仍不明确。本文总结了PGDM致胎儿CHD发生机制的研究进展。

1 氧化应激水平提高及细胞凋亡增加

细胞内能量代谢伴随线粒体内活性氧自由基(reactive oxygen species, ROS)的形成,而同时细胞内存在的超氧化物歧化酶(superoxide dismutase, SOD)、谷胱甘肽过氧化物酶、过氧化氢酶等抗氧化酶,以及维生素C、维生素E等抗氧化物质,共同维持细胞内氧化还原平衡,使细胞免于ROS损伤,并通过氧化还原信号参与维持细胞生命活动过程[20]。已有研究发现在成年糖尿病患者中,因线粒体功能障碍、NADPH氧化酶和黄嘌呤氧化酶活性增强使ROS生成增加,而抗氧化酶(SOD、过氧化氢酶、谷胱甘肽过氧化物酶)含量减少、酶活性减弱进一步降低了细胞清除胞内ROS的能力,致使ROS累积、氧化应激水平提高,引起心脏和血管慢性炎症、纤维化、凋亡、动脉硬化等病理改变,是糖尿病相关的心血管并发症发生发展的重要原因[21]

PGDM胚胎心脏中也存在氧化应激水平的提高。Wang等[22]在PGDM鼠12.5日龄(以E12.5表示)胚胎心脏中发现4-羟基壬烯酸与丙二醛(均为脂质过氧化产生的醛基产物中的代表性物质,是检测细胞内氧化应激水平的标志)含量增加,反映组织氧化应激水平提高,脂质过氧化产物累积[23-25]。而Wu等[26]使用超氧化物阴离子荧光探针(dihydroethidium, DHE)直接检测各组胎鼠心脏中超氧离子的水平,发现PGDM组E12.5胎鼠心脏的DHE荧光信号显著高于对照组,证实PGDM胎鼠心脏内ROS含量增加,氧化应激水平提高[27]。而对于过表达SOD的PGDM小鼠,其胎鼠心脏组织内氧化应激水平低于野生型小鼠,且心脏畸形发生率与对照组相仿[28-29],提示内源增加SOD酶含量可以减弱PGDM的致畸作用,低氧化应激水平有利于维持胚胎心脏的正常发育。Moazzen等[30]予PGDM鼠口服NAC抗氧化剂以降低氧化应激水平,发现胎鼠房室间隔缺损、大动脉转位及法洛四联症的发生率显著减低,说明外源补充抗氧化剂也可预防PGDM对心脏发育的不利影响,也进一步佐证PGDM时提高的氧化应激水平是导致心脏畸形的重要原因。

氧化应激水平提高可直接损伤细胞内蛋白质、脂质及核酸,也可激活下游信号通路,直接诱导细胞凋亡,或影响基因表达的转录调控。Wu等[26]在PGDM鼠胚胎心脏中发现,心内膜垫、心室肌及流出道等部位的凋亡细胞数量增加,介导细胞凋亡的活化型半胱天冬酶(caspase)8和3丰度显著增加。Wang等[29]在PGDM组E12.5胎鼠心脏中发现凋亡信号调节激酶(apoptosis signal-regulating kinase, ASK)1磷酸化活化水平及mRNA表达水平显著提高,且胎心组织ASK1含量高于其他器官组织;而敲除ASK1基因后,PGDM组小鼠胚胎心脏畸形发生率减少,caspase 3及caspase 8活化水平下降,心内膜垫、心室肌及流出道凋亡细胞减少,与非PGDM组水平相近,认为与氧化应激相关的ASK-JNK1/2-FoxO3a通路为导致胚胎心脏组织凋亡增加的重要通路,该通路最终可活化caspase 8,诱导细胞凋亡。Bohuslavova等[31]发现PGDM鼠胎心中低氧诱导因子-1(hypoxia-inducible factor 1, HIF-1)调控的下游信号蛋白增加,部分敲除小鼠HIF-1α并诱导PGDM后,其胚胎心脏畸形的发生率高于野生型PGDM鼠胚胎,且心脏发育的关键转录因子Nkx2.5、Tbx5、Mef2C的表达异常增加。线粒体内ROS累积时可稳定HIF-1α并活化下游通路[32],PGDM鼠胚胎心脏中HIF-1α通路激活也可反映细胞内ROS累积,而HIF-1通路本身为心脏发育的保护通路。因此,ASK-JNK1/2-FoxO3a-caspase 8通路及HIF-1α通路对于胚胎心脏的细胞凋亡具有重要的诱导作用,并最终引发心脏畸形。

2 心神经嵴细胞发生及迁移异常

心神经嵴细胞(cardiac neural crest cell, CNCC)是参与心脏发育重要的一类前体细胞。当心管环化完成、第二生心区细胞开始迁移并参与形成流出道、右心室、大部分流入道的心肌组织时,胚胎枕部体节上的神经嵴细胞(neural crest cell, NCC)受骨形态发生蛋白(bone morphogenetic protein, BMP)/转化生长因子-β(transforming growth factor-β, TGF-β)以及成纤维细胞生长因子(fibroblast growth factor, FGF)、Wnt/β-catenin和维甲酸信号通路诱导,脱离神经管成为CNCC,并随FGF浓度梯度迁移至心管,为流出道发育、分隔和主动脉发育、成形提供刺激信号,并与第二生心区相互作用共同构成流出道的组织[33]。在PGDM相关的CHD中,以大动脉转位、三尖瓣闭锁及永存动脉干为主的流出道畸形比例显著增加[34],这与破坏CNCC的动物模型中出现的、以流出道畸形为主的CHD表型十分相似[35],提示CNCC的形态发生、迁移以及与其他前体细胞相互作用的异常与CHD的发生密切相关。与此一致的是,Morgan等[36]在动物模型中发现,母鼠患糖尿病时,E9.5胎鼠心脏组织切片中迁移的CNCC数量显著少于对照,而E17.5胚胎中流出道畸形比例高于对照。

在胚胎心脏发育过程中,Wnt5a与细胞膜上的Frizzled受体结合后激活非经典Wnt/Ca2+信号通路,引起细胞内Ca2+浓度提高,进而活化钙调素依赖型蛋白激酶Ⅱ、蛋白激酶C、钙调磷酸酶,而钙调磷酸酶可以调控活化T细胞核因子(nuclear factor of activated T cell, NFAT),使NFAT作为转录因子调控下游基因的转录与表达,是流出道、瓣膜、间隔发育的重要信号通路[37],参与CNCC的迁移[38],并促进N-钙黏蛋白介导的CNCC细胞间作用。Wnt5a缺失时可出现流出道分隔异常,引起永存动脉干和右室双出口[39]。Wang等[28]发现PGDM鼠胎心组织中,Wnt5a的mRNA丰度及蛋白量均减少,非经典Wnt/Ca2+通路受到抑制,造成CNCC发育异常,引起PGDM相关的CHD。

在胚胎心脏发育过程中,转化生长因子超家族的TGF-β参与CNCC脱离神经管的发生过程,也参与心内膜垫内皮-间质转化以形成半月瓣。在PGDM小鼠胚胎心脏中发现TGF-β配体中的TGF-β1和TGF-β3的表达显著下调,且其下游转录因子TβRⅡ、Smad2和Smad3磷酸化减少,该通路被抑制[22]。其他参与CNCC分化和迁移的信号通路在PGDM相关CHD中起何作用有待进一步研究。

3 其他机制

Dong等[40]比较糖尿病组与非糖尿病组的小鼠胚胎心脏中miRNAs表达谱差异,发现167个miRNAs的表达丰度有差别。经Ingenuity Pathway Analysis(IPA)软件分析预测,在PGDM组中表达上调的miR-322-5p、miR-27a-3p和下调的miR-144、miR-142-3p等miRNAs的靶基因参与构成心脏发育的经典通路,包括STAT3通路、IGF-1信号通路,但这些通路异常最终起激活或抑制作用则有待进一步验证。同时,经Gene Ontology(GO)软件分析,大部分miRNAs的靶基因可以表达转录因子或转录因子调控蛋白,且与心脏发育不良、心肌肥大、心肌细胞凋亡有关,如Cited2、Zeb2、Mef2c、Smad4和Ets1。因此PGDM也可通过改变miRNAs表达谱而影响心脏发育的重要通路导致CHD。

Wu等[26]的研究还发现,PGDM胎鼠心脏组织中反映内质网应激的标志物(如CHOP、BiP、磷酸化内质网类似激酶等)均显著增多,X盒结合蛋白-1的mRNA剪接水平也显著提高,反映内质网应激增加。而内质网应激是指在多种生理或病理条件下细胞内质网钙稳态失衡或蛋白质加工运输障碍、生理功能发生紊乱的一种亚细胞器的病理过程,其也可能参与PGDM诱导的CHD的发生。

4 小结

综上所述,母亲PGDM是胎儿患CHD的重要危险因素。PGDM导致CHD的具体致病机制尚无定论,胎心的氧化应激水平提高、心脏组织凋亡增加、心脏发育关键通路调控异常和发育过程中CNCC的生物学行为改变均可能是CHD致病的重要机制,而miRNAs、内质网应激及遗传学背景在疾病发生过程中的作用仍有待进一步研究。

参考文献
[1]
van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide:A systematic review and meta-analysis[J]. J Am Coll Cardiol, 2011, 58(21): 2241-2247. DOI:10.1016/j.jacc.2011.08.025 (0)
[2]
Jorgensen M, McPherson E, Zaleski C, et al. Stillbirth:the heart of the matter[J]. Am J Med Genet A, 2014, 164A(3): 691-699. (0)
[3]
Triedman JK, Newburger JW. Trends in congenital heart disease:the next decade[J]. Circulation, 2016, 133(25): 2716-2733. DOI:10.1161/CIRCULATIONAHA.116.023544 (0)
[4]
Chatfield KC, Schrier SA, Li J, et al. Congenital heart disease in Cornelia de Lange syndrome:phenotype and genotype analysis[J]. Am J Med Genet A, 2012, 158A(10): 2499-2505. DOI:10.1002/ajmg.a.35582 (0)
[5]
Zaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone-modifying genes in congenital heart disease[J]. Nature, 2013, 498(7453): 220-223. DOI:10.1038/nature12141 (0)
[6]
Sifrim A, Hitz MP, Wilsdon A, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing[J]. Nat Genet, 2016, 48(9): 1060-1065. DOI:10.1038/ng.3627 (0)
[7]
Wang D, Wang F, Shi KH, et al. Lower circulating folate induced by a fidgetin intronic variant is associated with reduced congenital heart disease susceptibility[J]. Circulation, 2017, 135(18): 1733-1748. DOI:10.1161/CIRCULATIONAHA.116.025164 (0)
[8]
Zhao JY, Qiao B, Duan WY, et al. Genetic variants reducing MTR gene expression increase the risk of congenital heart disease in Han Chinese populations[J]. Eur Heart J, 2014, 35(11): 733-742. DOI:10.1093/eurheartj/eht221 (0)
[9]
Smedts HP, de Vries JH, Rakhshandehroo M, et al. High maternal vitamin E intake by diet or supplements is associated with congenital heart defects in the offspring[J]. BJOG, 2009, 116(3): 416-423. DOI:10.1111/j.1471-0528.2008.01957.x (0)
[10]
Linask KK, Han M. Acute alcohol exposure during mouse gastrulation alters lipid metabolism in placental and heart development:Folate prevention[J]. Birth Defects Res A Clin Mol Teratol, 2016, 106(9): 749-760. DOI:10.1002/bdra.v106.9 (0)
[11]
Han M, Evsikov AV, Zhang L, et al. Embryonic exposures of lithium and homocysteine and folate protection affect lipid metabolism during mouse cardiogenesis and placentation[J]. Reprod Toxicol, 2016, 61: 82-96. DOI:10.1016/j.reprotox.2016.03.039 (0)
[12]
Loffredo CA, Wilson PD, Ferencz C. Maternal diabetes:an independent risk factor for major cardiovascular malformations with increased mortality of affected infants[J]. Teratology, 2001, 64(2): 98-106. DOI:10.1002/(ISSN)1096-9926 (0)
[13]
Hoang TT, Marengo LK, Mitchell LE, et al. Original findings and updated meta-analysis for the association between maternal diabetes and risk for congenital heart disease phenotypes[J]. Am J Epidemiol, 2017, 186(1): 118-128. DOI:10.1093/aje/kwx033 (0)
[14]
Correa A, Gilboa SM, Besser LM, et al. Diabetes mellitus and birth defects[J]. Am J Obstet Gynecol, 2008, 199(3): 237. (0)
[15]
Leirgul E, Brodwall K, Greve G, et al. Maternal diabetes, birth weight, and neonatal risk of congenital heart defects in norway, 1994-2009[J]. Obstet Gynecol, 2016, 128(5): 1116-1125. DOI:10.1097/AOG.0000000000001694 (0)
[16]
Øyen N, Diaz LJ, Leirgul E, et al. Prepregnancy diabetes and offspring risk of congenital heart disease:a nationwide cohort study[J]. Circulation, 2016, 133(23): 2243-2253. DOI:10.1161/CIRCULATIONAHA.115.017465 (0)
[17]
陈海天, 李珠玉, 刘培培, 等. 广州地区妊娠期糖尿病发病情况调查及妊娠结局分析[J]. 中国慢性病预防与控制, 2017, 25(1): 38-41. (0)
[18]
Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12): 1090-1101. DOI:10.1056/NEJMoa0908292 (0)
[19]
魏玉梅, 杨慧霞. 孕前漏诊的孕前糖尿病的临床特点及对妊娠结局的影响[J]. 中华妇产科杂志, 2017, 52(4): 227-232. (0)
[20]
Sies H, Berndt C, Jones DP. Oxidative stress[J]. Annu Rev Biochem, 2017, 86: 715-748. DOI:10.1146/annurev-biochem-061516-045037 (0)
[21]
Kayama Y, Raaz U, Jagger A, et al. Diabetic cardiovascular disease induced by oxidative stress[J]. Int J Mol Sci, 2015, 16(10): 25234-25263. DOI:10.3390/ijms161025234 (0)
[22]
Wang F, Fisher SA, Zhong J, et al. Superoxide dismutase 1 in vivo ameliorates maternal diabetes mellitus-induced apoptosis and heart defects through restoration of impaired wnt signaling[J]. Circ Cardiovasc Genet, 2015, 8(5): 665-676. DOI:10.1161/CIRCGENETICS.115.001138 (0)
[23]
Elrayess MA, Almuraikhy S, Kafienah W, et al. 4-hydroxynonenal causes impairment of human subcutaneous adipogenesis and induction of adipocyte insulin resistance[J]. Free Radic Biol Med, 2017, 104: 129-137. DOI:10.1016/j.freeradbiomed.2017.01.015 (0)
[24]
Busch CJ, Hendrikx T, Weismann D, et al. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice[J]. Hepatology, 2017, 65(4): 1181-1195. DOI:10.1002/hep.28970 (0)
[25]
Kundu K, Knight SF, Lee S, et al. A significant improvement of the efficacy of radical oxidant probes by the kinetic isotope effect[J]. Angew Chem Int Ed Engl, 2010, 49(35): 6134-6138. DOI:10.1002/anie.201002228 (0)
[26]
Wu Y, Reece EA, Zhong J, et al. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis[J]. Am J Obstet Gynecol, 2016, 215(3): 366. (0)
[27]
Yamada K, Mito F, Matsuoka Y, et al. Fluorescence probes to detect lipid-derived radicals[J]. Nat Chem Biol, 2016, 12(8): 608-613. DOI:10.1038/nchembio.2105 (0)
[28]
Wang F, Reece EA, Yang P. Oxidative stress is responsible for maternal diabetes-impaired transforming growth factor beta signaling in the developing mouse heart[J]. Am J Obstet Gynecol, 2015, 212(5): 650. (0)
[29]
Wang F, Wu Y, Quon MJ, et al. ASK1 mediates the teratogenicity of diabetes in the developing heart by inducing ER stress and inhibiting critical factors essential for cardiac development[J]. Am J Physiol Endocrinol Metab, 2015, 309(5): E487-E499. DOI:10.1152/ajpendo.00121.2015 (0)
[30]
Moazzen H, Lu X, Ma NL, et al. N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes[J]. Cardiovasc Diabetol, 2014, 13: 46. DOI:10.1186/1475-2840-13-46 (0)
[31]
Bohuslavova R, Skvorova L, Sedmera D, et al. Increased susceptibility of HIF-1α heterozygous-null mice to cardiovascular malformations associated with maternal diabetes[J]. J Mol Cell Cardiol, 2013, 60: 129-141. DOI:10.1016/j.yjmcc.2013.04.015 (0)
[32]
Klimova T, Chandel NS. Mitochondrial complex Ⅲ regulates hypoxic activation of HIF[J]. Cell Death Differ, 2008, 15(4): 660-666. DOI:10.1038/sj.cdd.4402307 (0)
[33]
Brade T, Pane LS, Moretti A, et al. Embryonic heart progenitors and cardiogenesis[J]. Cold Spring Harb Perspect Med, 2013, 3(10): a013847. (0)
[34]
Wren C, Birrell G, Hawthorne G. Cardiovascular malformations in infants of diabetic mothers[J]. Heart, 2003, 89(10): 1217-1220. DOI:10.1136/heart.89.10.1217 (0)
[35]
Neeb Z, Lajiness JD, Bolanis E, et al. Cardiac outflow tract anomalies[J]. Wiley Interdiscip Rev Dev Biol, 2013, 2(4): 499-530. DOI:10.1002/wdev.2013.2.issue-4 (0)
[36]
Morgan SC, Relaix F, Sandell LL, et al. Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects[J]. Birth Defects Res A Clin Mol Teratol, 2008, 82(6): 453-463. DOI:10.1002/(ISSN)1542-0760 (0)
[37]
Gessert S, Kuhl M. The multiple phases and faces of wnt signaling during cardiac differentiation and development[J]. Circ Res, 2010, 107(2): 186-199. DOI:10.1161/CIRCRESAHA.110.221531 (0)
[38]
Schleiffarth JR, Person AD, Martinsen BJ, et al. Wnt5a is required for cardiac outflow tract septation in mice[J]. Pediatr Res, 2007, 61(4): 386-391. DOI:10.1203/pdr.0b013e3180323810 (0)
[39]
Fujio Y, Matsuda T, Oshima Y, et al. Signals through gp130 upregulate Wnt5a and contribute to cell adhesion in cardiac myocytes[J]. FEBS Lett, 2004, 573(1-3): 202-206. DOI:10.1016/j.febslet.2004.07.082 (0)
[40]
Dong D, Zhang Y, Reece EA, et al. microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice[J]. Reprod Toxicol, 2016, 65: 365-374. DOI:10.1016/j.reprotox.2016.09.007 (0)