2. 出生缺陷与相关妇儿疾病教育部重点实验室, 四川 成都 610041
肥胖症(obesity)是多种因素造成的全身脂肪过度积聚,对代谢、内分泌、心血管、呼吸、消化等系统及生长发育有较广泛的影响[1]。儿童期肥胖症与成年期肥胖、糖尿病、高脂血症、高血压、冠心病等的发生发展密切相关。近年来,随着人们生活水平的提高以及膳食结构的改变,儿童肥胖症的发病率呈全球化和低龄化趋势[2-3]。世界卫生组织关于肥胖症的简报显示,全球肥胖症呈快速上升趋势,自1980年以来已经翻了一番,全球已有4 000多万肥胖症儿童患者[4]。在肥胖症的非遗传发病因素中,肠道菌群的作用日益受到重视,在多项动物模型研究中发现肠道菌群的变化与肥胖有关[5-7]。本文就儿童肥胖症与肠道菌群的相关性作一综述,为儿童肥胖症的病因和防治提供参考依据。
1 儿童肠道菌群的特点胎儿生长的母体子宫环境是相对无菌的。由于出生时和出生后与外界环境的接触,婴儿出生2~4 h后肠道内开始定植大肠杆菌、葡萄球菌等需氧菌。然后,婴儿肠道的乳酸杆菌、双歧杆菌等厌氧菌迅速生长,并在出生4~5 d后逐渐占优势,7 d后这些厌氧菌的数量可达肠道细菌总量的98%。其后产气肠球菌、变形杆菌、产气杆菌、荚膜梭菌等陆续产生,它们参与构成了肠道庞大的微生态系统[8]。当开始添加固体食物后,肠道细菌的比例发生不同程度的改变,2岁后逐渐与成人相似[9-10]。肠道微生态系统是机体最大、最重要的微生态系统,正常情况下肠道中的各种细菌数量、种类保持一定的比例,共同维护肠道微环境的稳定,可以有效阻止病原菌的定植;若受分娩方式、早期喂养方式、生活方式、药物使用、疾病等的多种因素影响[11-12],打破肠道微生物稳态可影响宿主能量代谢、免疫系统和炎性反应等,导致肥胖、腹泻、炎性肠病、新生儿坏死性小肠结肠炎等疾病的发生[13-14]。
2 肠道菌群变化与儿童肥胖症多项研究发现,肥胖症患儿肠道微生物的组成、数量和比例发生了变化。Abdallah等[15]报道,肥胖症患儿肠道菌群与对照组比较,显示厚壁菌门的细菌较多而拟杆菌门的细菌较少,经过控制饮食体重下降后,这两门细菌则出现反向改变,可见肠道拟杆菌门与厚壁菌门细菌的比例变化与儿童肥胖症相关。Kalliomaki等[16]通过对25个体重指数(BMI)增高的7岁儿童进行前瞻性研究,发现与BMI正常的同龄儿童相比,BMI增高的儿童肠道双歧杆菌含量减少,肠球菌含量增多。Gao等[17]研究发现,与学龄期正常儿童相比,学龄期肥胖症儿童粪便中肠道双歧杆菌含量降低,大肠杆菌含量增高,两者比值变小,考虑儿童肥胖症与肠道菌群失调有关联性。双歧杆菌是肠道益生菌的典型代表,而大肠杆菌可以作为致病菌的代表菌,被认为是肠道正常菌群结构向不利于机体健康方向转变的重要警示因子,两者又是儿童期较为常见的肠道菌群,故两者的比值可以用来评估肠道菌群结构的状况。
3 儿童肥胖症与肠道菌群相关的可能机制 3.1 肠道菌群与能量代谢平衡近年来,有多项研究表明肠道菌群不仅参与宿主的能量获取,还与糖脂的代谢和调节有关。研究人员发现肥胖的发生似乎与食物能量摄入无关,而与肠道菌群有关。他们将相同的高脂/高糖食物分别饲喂给肠道无菌组和正常组小鼠,结果正常组发生了肥胖,而无菌组没有发生肥胖;给无菌小鼠分别移植来自肥胖、营养不良和正常小鼠的粪便后,无菌小鼠则出现与粪便供体小鼠相同的体重特征[18]。有报道显示,肥胖症患儿的短链脂肪酸丁酸和丙酸较对照组高,肠道菌群能将不易消化吸收的多糖或脂肪(占摄取食物总量的10%~15%),分解成单糖或短链脂肪酸(SCFA),能增加宿主能量的摄入;乙酸、丙酸和丁酸3种SCFA在体内能够刺激大肠和小肠上皮细胞的生长,增加肠道对营养物质的吸收[19-20]。
肠道菌群的一些代谢产物如SCFA、甲烷等,能减缓肠道的蠕动,延长肠内容物的通过时间,促使营养物质更加充分吸收。实验证据表明,肠道菌群可能促进宿主脂肪合成和积累。肠上皮细胞可产生一种称作禁食诱导脂肪因子(fasting-induced adipose factor, Fiaf)的脂蛋白酶(lipoprotein lipase)抑制因子;肠道菌群可下调Fiaf基因表达,增加脂蛋白酶的表达,促进脂肪细胞中的三酰甘油积聚[21]。肠道菌群还可以诱导脂肪合成的关键酶脂肪酸合成酶(fatty acid synthase)、乙酰CoA羧化酶(acetyl-CoA carboxylase),可调节固醇调节元件结合蛋白Ⅰ(sterol regulatory element-binding protein Ⅰ)、蛋白碳水化合物反应元件结合蛋白(carbohydrate response element-binding protein)基因的表达,从而促进三酰甘油在肝脏脂肪细胞中储存[22]。肠道微生物也参与机体维生素的合成,以及钙、镁和铁离子的吸收,促进宿主的能量合成和代谢[23]。在肠道菌群的作用下,肠道中营养物质利用率大大提高,促进机体体重增加和肥胖的发生。
3.2 胃肠激素与多肽胃肠道是人体最大的内分泌器官,其分泌的多种胃肠激素对人体的能量摄入和能量代谢发挥重要作用,与肥胖之间的关系更是研究热点。有研究显示,由肠道菌群产生的SCFA,除了作为能量的来源外,还能与肠道L细胞的G蛋白偶联受体(G-protein-coupled receptor, GPR)41和43结合,刺激YY肽(peptide yy, Pyy)的分泌,抑制肠道蠕动,使肠内容物的通过时间延长,营养物质吸收增加,体重增加;而剔除GPR 41受体的小鼠,由于Pyy分泌减少,肠道内容物通过时间减少,体重也降低[24-25]。肠道L细胞以共分泌模式分泌胰高血糖素样肽(glucagon-like peptide, GLP)1和2,肠道菌群通过GLP-2来影响肠道屏障的通透性。在遗传性肥胖模型ob/ob(leptin缺失)小鼠的饲料中添加寡聚多糖后,研究人员发现肠道中双歧杆菌和乳酸杆菌的比例较对照组增加,GLP-2的生成增加;同时增强肠道上皮细胞之间的紧密连接,减少肠道革兰阴性菌细胞壁组分之一的脂多糖(lipopolysaccharide, LPS)进入血液,促使内毒素血症和炎症水平减轻。该研究还发现,外源性应用GLP-2激动剂也可以产生类似的效应,并且GLP-2拮抗剂能消除这一效应[26]。另外,肠道菌群还可以通过刺激胃肠激素的释放,激活内源性大麻素系统,触发慢性炎症反应,从而影响机体能量代谢增加而导致肥胖的发生[5, 27]。
3.3 肠道菌群与胰岛素抵抗肠道菌群参与能量代谢和免疫功能的调节,肠道菌群失调会增加LPS的吸收,触发炎症反应,通过核因子κB等信号通路促进胰岛素信号通路胰岛素受体底物1(insulin receptor substrate 1, IRS1)磷酸化,促进胰岛素抵抗和肥胖的产生;如果调节异常的肠道菌群,可能会成为防治肥胖和胰岛素抵抗的新靶点[28-29]。肠道L细胞分泌的GLP-1,可以作用于中枢神经系统,具有抑制食欲的作用,使机体产生饱胀感;同时GLP-1又以葡萄糖浓度依赖性方式,促进胰岛β细胞分泌胰岛素。研究人员在ob/ob小鼠的食物中添加抗消化淀粉后,检测其肠道菌群构成发生明显的改变,餐后分泌的GLP-1值显著提高,导致小鼠糖耐量和体重降低;而当人为阻断GLP-1的这一作用后,添加抗消化淀粉对小鼠代谢产生的作用也随之消失[30-31]。Caricilli等[32]也证实,肥胖个体的肠道厚壁菌门增加、放线菌和拟杆菌降低,这种改变干扰肠通透性,增加LPS的吸收,启动Toll样受体(TLR)4和2及LPS受体CD14,激活炎症反应途径,从而产生胰岛素抵抗,导致肥胖的发生。
3.4 炎性反应“代谢性内毒素血症”假说解释了高脂饮食引发慢性低水平炎症的机制:饮食诱导肠道菌群改变,增加机会致病菌的数量,降低益生菌的数量,影响肠上皮细胞基因表达,导致肠道通透性增加,使得进入血液的内毒素增加,引起慢性炎症反应,进而产生肥胖、胰岛素抵抗等代谢失调[30, 33]。肠道菌群特别是LPS可以与免疫细胞上的Toll样受体4和2及CD14结合,激活肿瘤坏死因子α、白介素1和白介素6和单核细胞趋化蛋白1等炎性因子的合成与释放,使机体呈现慢性炎症状态[19, 33-35]。研究人员持续4周注射低剂量LPS给正常饲养的小鼠,小鼠脂肪组织中出现巨噬细胞,肝脏出现轻度胰岛素抵抗及炎症反应,且体重增加;而敲除小鼠单核细胞、巨噬细胞等细胞表面的白细胞分化抗原的CD14,则不会出现LPS引起的肥胖及胰岛素抵抗等现象。另外,脂多糖结合蛋白(LPS-binding protein, LBP)可作为低内毒素血症的标记。研究发现肥胖儿童的LBP含量较对照组增高,提示肥胖症患儿体内可能存在低度的、系统性的慢性炎症[36-37]。研究还发现,LPS可激活肥胖小鼠内源性大麻素系统,促使大麻素受体1在脂肪组织及结肠中的表达上调,进一步增加肠道通透性及脂肪储存,而肠道通透性增加又使更多的LPS入血,进而促发炎症反应加重肥胖发展[38-39]。
4 结语与展望越来越多的证据表明肠道菌群和儿童肥胖症之间存在着密切的联系,各种原因导致的肠道菌群失调会直接导致肥胖的发生,调节肠道菌群的平衡将来或许会成为防治肥胖症的靶点之一。但肠道菌群与儿童肥胖症之间的关系,还有很多未知领域需要探索,目前尚缺乏循证医学的证据支持,相关的分子机制也还有待进一步研究。
[1] | Zdrojowy-Welna A, Tupikowska M, Kolackov K, et al. The role of fat mass and obesity-associated gene (FTO) in obesity-an overview[J]. Endokrynol Pol, 2014, 65 (3): 224–231. DOI:10.5603/EP.2014.0031 |
[2] | Bulbul T, Hoque M. Prevalence of childhood obesity and overweight in Bangladesh:findings from a countrywide epidemiological study[J]. BMC Pediatr, 2014, 14 : 86. DOI:10.1186/1471-2431-14-86 |
[3] | Valdes Pizarro J, Royo-Bordonada MA. Prevalence of childhood obesity in Spain:National Health Survey 2006-2007[J]. Nutr Hosp, 2012, 7 (1): 154–160. |
[4] | World Health Organization. Obesity and Overweight[EB/OL](January 2016). http://www.who.int/mediacentre/factsheets/fs311/en. |
[5] | Blaut M, Klaus S. Intestinal microbiota and obesity[J]. Handb Exp Pharmacol, 2012 (209): 251–273. |
[6] | Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in hunmans[J]. Am J Clin Nutr, 2011, 94 (1): 58–65. DOI:10.3945/ajcn.110.010132 |
[7] | Blasco-Baque V, Serino M, Burcelin R. Metabolic therapy at the edge between human hosts and gut microbes[J]. Ann Pharm Fr, 2013, 71 (1): 34–41. DOI:10.1016/j.pharma.2012.08.003 |
[8] | Munyaka PM, Khafipour E, Ghia JE. External influence of early childhood establishment of gut microbiota and subsequent health implications[J]. Front Pediatr, 2014, 2 : 109. |
[9] | Paliy O, Piyathilake CJ, Kozyrskyj A, et al. Excess body weight during pregnancy and offspring obesity:potential mechanisms[J]. Nutrition, 2014, 30 (3): 245–251. DOI:10.1016/j.nut.2013.05.011 |
[10] | Avershina E, Storro O, Oien T, et al. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children[J]. FEMS Microbiol Ecol, 2014, 87 (1): 280–290. DOI:10.1111/1574-6941.12223 |
[11] | Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants:profiles by mode of delivery and infant diet at 4 months[J]. CMAJ, 2013, 185 (5): 385–394. DOI:10.1503/cmaj.121189 |
[12] | Munyaka PM, Khafipour E, Ghia JE. External influence of early childhood establishment of gut microbiota and subsequent health implications[J]. Front Pediatr, 2014, 2 : 109. |
[13] | Zak-Golab A, Olszanecka-Glinianowicz M, Kocelak P. The role of gut microbiota in the pathogenesis of obesity[J]. Postepy Hig Med Dosw (Online), 2014, 68 : 84–90. DOI:10.5604/17322693.1086419 |
[14] | Delzenne NM, Neyrinck AM, Cani PD. Modulation of the gut microbiota by nutrients with prebiotic properties:consequences for host health in the context of obesity and metabolic syndrome[J]. Microb Cell Fact, 2011, 10 (Suppl 1): S10. DOI:10.1186/1475-2859-10-S1-S10 |
[15] | Abdallah Ismail N, Ragab SH, Abd Elbaky A, et al. Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults[J]. Arch Med Sci, 2011, 7 (3): 501–507. |
[16] | Kalliomaki M, Collado MC, Salmnen S, et al. Early differences in fecal microbiota composition in children may predict over-weight[J]. Am J Clin Nutr, 2008, 87 (3): 534–538. |
[17] | Gao X, Jia R, Xie L, et al. Obesity in school-aged children and its correlation with gut E.coli and Bifidobacteria:a case-control study[J]. BMC Pediatr, 2015, 15 : 64. DOI:10.1186/s12887-015-0384-x |
[18] | Clarke G, Stilling RM, Kennedy PJ, et al. Minireview:Gut microbiota:the neglected endocrine organ[J]. Mol Endocrinol, 2014, 28 (8): 1221–1238. DOI:10.1210/me.2014-1108 |
[19] | Verdam FJ, Fuentes S, de Jonge C, et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity[J]. Obesity (Silver Spring), 2013, 21 (12): E607–E615. DOI:10.1002/oby.20466 |
[20] | Payne AN, Chassard C, Zimmermann M, et al. The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization[J]. Nutr Diabetes, 2011, 1 : e12. DOI:10.1038/nutd.2011.8 |
[21] | Swartz TD, Sakar Y, Duca FA, et al. Preserved adiposity in the Fischer 344 rat devoid of gut microbiota[J]. FASEB J, 2013, 27 (4): 1701–1710. DOI:10.1096/fj.12-221689 |
[22] | Bached F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad SCI USA, 2007, 104 (3): 979–984. DOI:10.1073/pnas.0605374104 |
[23] | Musso G, Gambino R, Cassader M, et al. Obesity. diabetes, and gut microbiota:the hygiene hypothesis expanded?[J]. Diabetes Care, 2010, 33 (10): 2277–2284. |
[24] | Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41[J]. Proc Natl Acad SCI USA, 2008, 105 (43): 16767–16772. DOI:10.1073/pnas.0808567105 |
[25] | Seimon RV, Taylor P, Little TJ, et al. Effects of acute and longer-term dietary restriction on upper gut motility, hormone, appetite, and energy-intake responses to duodenal lipid in lean and obese men[J]. Am J Clin Nutr, 2014, 99 (1): 24–34. DOI:10.3945/ajcn.113.067090 |
[26] | Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J]. Gut, 2009, 58 (8): 1091–1103. |
[27] | Muccioli GG, Naslain D, Bäckhed F, et al. The endocannabinoid system links gut microbiota to adipogenesis[J]. Mol Syst Biol, 2010, 6 : 392. |
[28] | Caricilli AM, Saad MJ. Gut microbiota composition and its effects on obesity and insulin resistance[J]. Curr Opin Clin Nutr Metab Care, 2014, 17 (4): 312–318. DOI:10.1097/MCO.0000000000000067 |
[29] | Carvalho BM, Saad MJ. Influence of gut microbiota on subclinical inflammation and insulin resistance[J]. Mediators Inflamm, 2013, 2013 : 986734. |
[30] | Cani PD, Lecourt E, Dewulf EM, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal[J]. Am J Clin Nutr, 2009, 90 (5): 1236–1243. |
[31] | Yadav H, Lee JH, Lloyd J, et al. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion[J]. J Biol Chem, 2013, 288 (35): 25088–25097. DOI:10.1074/jbc.M113.452516 |
[32] | Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance[J]. Nutrients, 2013, 5 (3): 829–851. DOI:10.3390/nu5030829 |
[33] | Duburcq T, Hubert T, Saint-Leger P, et al. Impact of endotoxin challenge in obese pigs[J]. Shock, 2014, 41 (6): 546–553. |
[34] | Clemente-Postigo M, Queipo-Ortuno MI, Murri M, et al. Endotoxin increase after fat overload is related to postprandial hypertriglyceridemia in morbidly obese patients[J]. J Lipid Res, 2012, 53 (5): 973–978. DOI:10.1194/jlr.P020909 |
[35] | Wang JH, Bose S, Kim GC, et al. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota[J]. PLoS One, 2014, 9 (1): e86117. DOI:10.1371/journal.pone.0086117 |
[36] | Kheirandish-Gozal L, Peris E, Wang Y, et al. Lipopolysac-charide-binding protein plasma levels in children:effects of obstructive sleep apnea and obesity[J]. J Clin Endocrinol Metab, 2014, 99 (2): 656–663. |
[37] | Muccioli GG, Naslain D, Bäckhed F, et al. The endocannabinoid system links gut microbiota to adipogenesis[J]. Mol Syst Biol, 2010, 6 : 392. |
[38] | Chen G, Pang Z. Endocannabinoids and obesity[J]. Vitam Horm, 2013, 91 : 325–368. DOI:10.1016/B978-0-12-407766-9.00014-6 |
[39] | Scherma M, Fattore L, Castelli MP, et al. The role of the endocannabinoid system in eating disorders:neurochemical and behavioural preclinical evidence[J]. Curr Pharm Des, 2014, 20 (13): 2089–2099. DOI:10.2174/13816128113199990429 |