线粒体通过呼吸氧化链、脂肪酸氧化与三羧酸循环的氧化磷酸化持续供给ATP并维持细胞的基本代谢。作为半自主细胞器,线粒体DNA可自主复制、转录、翻译线粒体蛋白。同时,线粒体在维持钙稳态,产生和清除氧化剂,隔离促凋亡蛋白、维持细胞存活等方面也发挥作用[1-2]。因此,线粒体对调控细胞能量稳定、维持细胞功能起着十分重要的作用。在应激条件下,ATP合成被打断,线粒体受损、功能紊乱,产生过量的活性氧和相关蛋白,激活细胞死亡通路。然而,细胞能够具有一种防止受损线粒体损伤细胞的机制,在受损的线粒体激活细胞死亡前选择性地隔离和降解功能紊乱的线粒体—称为线粒体自噬[3-4]。
1 线粒体自噬的概述以细胞生物学为基础将线粒体自噬分为三个类型[5]:一型线粒体自噬是在营养缺乏的条件下,前自噬小泡形成杯状的吞噬泡,逐渐包裹和隔离个别线粒体,包裹后随着线粒体外膜去极化,线粒体自噬小泡外膜被酸化,最终在溶酶体中被水解,常需要磷脂酰肌醇-3-激酶(phosphatidylinositol-3-Kinase, PI3K)参与并与线粒体分裂紧密相关。二型线粒体自噬是受损线粒体在线粒体外膜与包含LC-3的自噬体结合,发生线粒体去极化,囊泡被酸化降解,不需PI3K的参与,不发生线粒体分裂,也不形成吞噬泡。三型线粒体自噬,也被称为微线粒体自噬,与线粒体衍生囊泡(mitochondria-derived vesicles, MDVs)形成有关,被氧化的线粒体蛋白通过出芽的方式形成线粒体衍生囊泡,囊泡逐渐融合成多泡体,最后被溶酶体水解形成线粒体碎片。
2 线粒体自噬的机制 2.1 线粒体形态学改变与线粒体自噬线粒体是一类高度动态的细胞器,在正常情况下,它的形态始终处于融合和分裂的动态平衡中[6]。线粒体的分裂常常产生两个不均匀的子代:其中一个子代的膜电位较高,另一个子代的膜电位较低,出现线粒体膜电位去极化。而膜电位较高的线粒体易发生融合[7]。一方面,分裂保守的大GTP酶家族成员(dynain-related protein 1, Drp1)调控线粒体的分裂,形成多亚基聚合物包裹在线粒体外膜上,随之切断外膜分裂线粒体[8-9]。线粒体融合蛋白(mitofusin, MFN)也属于大GTP酶,促进线粒体外膜融合[10],而视神经萎缩蛋白(optic atrophy 1, OPA1)促进线粒体内膜的融合[11]。
Twig等[7]发现线粒体膜电位发生去极化时,线粒体融合减少,与线粒体发生共定位的自噬信号增强,表明线粒体的动态平衡与线粒体自噬密切相关,线粒体的动态平衡转向增加分裂和减少融合时,就会促进自噬、降解受损的线粒体[12]。
2.2 受体介导线粒体自噬受体介导的线粒体自噬通过一系列高度保守机制选择性清除受损线粒体,机制与受体蛋白的磷酸化和去磷酸化调控有关[13]。
2.2.1 PINK1-Parkin信号通路介导的线粒体自噬PINK1是一类丝氨酸/苏氨酸激酶,主要定位于健康的线粒体内膜上,是线粒体损伤的感受器,当线粒体发生损伤时,PINK1由线粒体内膜向外膜转移,在外膜上聚集,并活化胞浆中的E3泛素蛋白连接酶—Parkin[14-15]。活化的Parkin能够使受损线粒体的阴离子电位通道蛋白VDAC1泛素化,并被信号接头蛋白P62/SQSTM1识别,再与吞噬膜表面的Atg8家族同源蛋白(LC3等)连接,启动线粒体自噬[16, 19]。Ziviani等[17]研究表明,Parkin或PINK1缺失的情况下MFN表达增加,线粒体分裂减少而融合增加,线粒体自噬被抑制。因此Parkin和PINK1能介导线粒体融合蛋白MFN的泛素化,而MFN的泛素化可能是线粒体自噬的信号:泛素化的MFN被清除后线粒体融合功能丧失,随后通过自噬被清除。而Wang等[18]研究发现,线粒体分裂的相关蛋白Drp1是Parkin的底物,敲除或沉默后可引起线粒体破碎,诱导自噬发生。最近研究发现,核点蛋白52KD、视神经蛋白、自噬接头蛋白P62和Tax1结合蛋白1以及NBR1都与PINK1-Parkin依赖的线粒体自噬紧密相关[19-20]。
2.2.2 NIX/BNIP3L介导的线粒体自噬NIX/BNIP3L是定位于线粒体膜和内质网的一种受体蛋白,它的结构56%与BNIP3同源,其中包含与LC3/GABARAP的结合区域—LIR基序[21-22]。NIX/BNIP3L因属于BCL-2家族,曾被认为是一类促凋亡蛋白,最近发现它们在线粒体自噬中也发挥着重要作用。Sandoval等[23]在NIX/BNIP3基因敲除小鼠观察到红细胞寿命缩短,线粒体膜电位不能发生去极化,线粒体自噬被抑制;用NIX同源类似物处理后,线粒体膜电位迅速降低,线粒体分裂增加,受损线粒体通过自噬途径降解,红细胞寿命恢复正常。有学者[24]发现,当细胞处于低氧状态时,HIF-1介导BNIP和BNIP3L表达,诱导线粒体自噬发生从而防止细胞死亡。
2.2.3 FUNDC1介导的线粒体自噬FUNDC1是一个三次跨膜蛋白,定位于线粒体外膜上,在FUNDC1持续表达的情况下引起线粒体自噬。与NIX/bnip3类似,FUNDC1也存在保守的LIR结构域,并与LC3相互作用,介导低氧诱导的线粒体自噬[25]。正常情况下,CK2与Src磷酸酶磷酸化的FUNDC1第13位丝氨酸结合,FUNDC1失活则不能与LC3结合。当缺氧和线粒体膜电位下降时,FUNDC1的第13位丝氨酸和第18位苏氨酸发生去磷酸化,从而促进与LC3的相互作用和线粒体自噬[25]。WU等[26]证明,定位于线粒体的丝氨酸苏氨酸蛋白磷酸酶PGAM5具有去磷酸化的功能,可以通过调节FUNDC1和NIX/BNIP而影响线粒体自噬, 进而对抗细胞坏死[27]。
2.3 其他蛋白介导的线粒体自噬除了上述受体蛋白参与线粒体自噬的调控,许多其他蛋白也在线粒体自噬中发挥重要作用。在Parkin基因敲除细胞中可以发现自噬相关基因AMBRA1的表达上调,线粒体自噬水平下降。Van Humbeeck等[28]和Strappazzon等[29]证实蛋白AMBRA1通过与Parkin互相作用启动线粒体自噬。此外,心磷脂、六羟基多巴胺、鱼藤酮、PKC抑制剂staurosporine在神经元细胞中都可以介导选择性线粒体自噬的发生[30]。
3 线粒体自噬与神经退行性疾病 3.1 阿尔兹海默症阿尔茨海默症(Alzheimei's disease, AD)是一种起病隐匿的进行性神经系统退行性疾病,在神经元亚细胞结构中可观察到β淀粉样蛋白(β amyloid protein, Aβ)的大量聚集[31]。淀粉样蛋白β在节前神经终末聚集影响神经突触功能,包括释放神经递质以及突触囊泡[32]。有学者[32-34]证实,阿尔兹海默症患者神经元线粒体中观察到Aβ的大量聚集,导致线粒体肿胀,结构紊乱,线粒体分裂蛋白Fis1、Drp1表达增加,而MFN和OPA1表达降低,线粒体分裂增加而融合减少,最终导致线粒体碎片化功能障碍。有研究证明,AD患者中Parkin蛋白显著减少,受损线粒体通过选择性自噬途径清除[34]。Khandelwal等[35]发现,在AD动物模型中增加Parkin的表达可降低细胞内Aβ水平。研究还发现,阿尔兹海默症患者线粒体DNA的突变增加[36],提示线粒体功能障碍与AD发生有关。氧化应激反应是促使AD发生的早期事件,线粒体因此受损,并加重氧化应激反应,形成恶性循环,促进AD发生发展。因此,线粒体自噬可以通过清除受损的线粒体和具有细胞毒性的Aβ,对于AD起到保护性的作用。
3.2 帕金森氏病帕金森氏病(Parkinson's disease, PD)是由于多巴胺能神经元进行性丢失及胞质内α-突触核蛋白聚集成路易小体所致的神经退形性疾病。Deng等[37]发现,PD动物模型中存在大量水肿的线粒体。另外,PD患者中可以观察到线粒体自噬的相关基因PARKIN,PINK1,DJ1表达[38]。2010年,Geisler等[39]报道了PINK1/Parkin介导的线粒体大自噬途径在PD发生中的作用。线粒体自噬参与PD发生还有以下线索:① PD患者脑组织、肌肉组织的线粒体电子传递链复合物Ⅰ减少导致氧自由基的产生,以及线粒体的氧化应激损伤[40]。② PD患者α-突触核蛋白发生错误的折叠聚集,损伤线粒体,导致线粒体自噬发生[41]。③ Sanders等[42]发现PD模型的黑质神经元存在线粒体DNA损伤。
3.3 亨廷顿氏病在亨廷顿氏病(Huntington disease, HD)患者和小鼠模型均存在线粒体缺陷。Pandey等[43]在啮齿动物HD模型的脑组织中发现电子呼吸链复合物Ⅰ、Ⅱ、Ⅲ、Ⅳ的酶活性显著降低,提示线粒体从某些方面参与HD的病理发展。Shirendeb等[44]发现HD患者脑皮质Drp1和Fis1的表达增高,MFN和OPA1的表达降低,提示线粒体参与HD的发生发展。Kim等[45]通过检测HD患者纹状体神经元中线粒体标记物COX2、SOD2和细胞色素C推测线粒体的变化,发现HD患者线粒体分裂增加、融合降低,出现线粒体功能障碍。提示线粒体自噬对HD有保护作用。
3.4 肌萎缩性脊髓侧索硬化症肌萎缩性脊髓侧索硬化症(amyotrophic lateral sclerosis, ALS)患者的脊髓和肌肉活组织存在线粒体缺陷。Pedrini等[46]在ALS小鼠模型和患者中均证实,重组人超氧化物岐化酶突变破坏线粒体膜的完整性。Wong等[47]也证实,视神经蛋白可作为ALS患者受损线粒体的自噬受体,从而Parkin介导线粒体自噬。因此,纠正线粒体缺陷可能在ALS的发生发展中起保护作用。
4 线粒体自噬与小儿神经系统疾病 4.1 缺氧缺血性脑损伤神经元细胞的神经递质合成、轴突运输以及有氧代谢均需要线粒体进行供能[48]。缺氧缺血性脑损伤导致大量活性氧释放,在线粒体释放促凋亡因子前,通过自噬将线粒体迅速清除,在早期发挥促进神经元存活的作用[49]。Shi等[50]研究发现,在新生儿缺氧缺血的情况下,BNIP3和LC3相互作用引起线粒体自噬,延迟皮层神经元细胞死亡;建立BNIP3基因敲除鼠及野生大鼠的缺血缺氧动物模型,并对基因敲除大鼠皮层神经元进行氧糖剥夺处理,发现敲除鼠的NIX/BNIP3L表达上调,与LC3的相互作用、凋亡减弱,自噬增强,大脑梗死灶体积变小。Cavallucci等[51]发现增强线粒体自噬可以延缓急性局灶缺血性脑损伤模型的远期退化。
4.2 小儿惊厥相关性疾病惊厥是神经元过度去极化及同步异常放电引起的运动、行为和自主神经功能异常,常由缺氧缺血或低血糖等引起,发生率0.1%~0.3%。癫癎持续状态(status epilepticus, SE)大鼠模型的海马和皮层神经元中LC3和Beclin1的表达都有所增高,提示自噬参与SE的病理过程[52]。邱小雪等[53]在SE模型中通过投射电子显微镜观察海马CA3区线粒体超微结构,发现癫癎反复发作可导致海马线粒体损伤,线粒体分裂、融合紊乱;线粒体分裂抑制剂Mdivi-1可抑制癫癎大鼠海马线粒体分裂,减轻癫癎致海马神经元氧化应激损伤,抑制致癎大鼠海马神经细胞凋亡,保护线粒体功能,减少癫癎大鼠海马CA3区细胞群爆发性电活动。此外,Frye等[54]发现能量代谢异常与线粒体功能障碍也参与自闭症谱系障碍的癫癎儿童的发病过程。线粒体自噬可以保护线粒体功能的完整,可能作为癫癎的辅助治疗。
4.3 MELAS型线粒体脑肌病MELAS型线粒体脑肌病(mitochondrial encephalopathy lactic acidosis and stoke like episodes, MELAS)在儿童期多见,是一组mtDNA突变所致线粒体结构、功能异常的系统疾病。有学者[55]对8例MELAS患者进行基因检测和肌肉活检,发现在mtDNA突变病例中,线粒体自噬的相关指标beclin1表达减弱,说明mtDNA的突变不仅使线粒体功能、形态发生变化,也使线粒体自噬减弱,造成线粒体异常增生,提示线粒体自噬可能参与MELAS的病理修复过程。
5 展望目前,线粒体自噬机制复杂,涉及多条信号通路。线粒体自噬在神经系统疾病的修复中起重要作用,但目前只揭示了PINK1/Parkin通路在神经退行性疾病中的调控作用,并且部分结果尚存在争议。NIX/BNIP3L和FUNDC1主要调控低氧下的线粒体自噬,但在缺氧缺血条件下对线粒体自噬的调控有待进一步探讨。明确线粒体自噬在神经系统疾病发生中的作用和相关分子机制有助于为治疗提供新思路。
[1] | Mitchell T, Chacko B, Ballinger SW, et al. Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease:implications for mitochondrial therapeutics[J]. Biochem Soc Trans, 2013, 41 (1): 127–133. DOI:10.1042/BST20120231 |
[2] | Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways:traffic control by redox signaling[J]. Free Radic Biol Med, 2013, 63 (10): 207–221. |
[3] | Zhang J. Autophagy and mitophagy in cellular damage control[J]. Redox Biology, 2013, 1 (1): 19–23. DOI:10.1016/j.redox.2012.11.008 |
[4] | Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8 (1): 3–5. DOI:10.1089/rej.2005.8.3 |
[5] | Lemasters JJ. Variants of mitochondrial autophagy:Types 1 and 2 mitophagy and micromitophagy (Type 3)[J]. Redox Biol, 2014, 2 (1): 749–754. |
[6] | Huang H, Yang L, Zhang P, et al. Real-time tracking mitochondrial dynamic remodeling with two-photon phosphorescent iridium (Ⅲ) complexes[J]. Biomaterials, 2016, 83 : 321–331. DOI:10.1016/j.biomaterials.2016.01.014 |
[7] | Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy[J]. Embo J, 2008, 27 (2): 433–446. DOI:10.1038/sj.emboj.7601963 |
[8] | Ji WK, Hatch AL, Merrill RA, et al. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites[J]. Elife, 2015, 4 : e11553. |
[9] | Fukumitsu K, Hatsukano T, Yoshimuraa, et al. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cferebellar Purkinje cells[J]. Mol Cell Neurosci, 2016, 71 : 56–65. DOI:10.1016/j.mcn.2015.12.006 |
[10] | Lee JY, Kapur M, Li M, et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria[J]. J Cell Sci, 2014, 127 (Pt 22): 4954–4963. |
[11] | Baker MJ, Lampe PA, Stojanovski D, et al. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics[J]. EMBO J, 2014, 33 (6): 578–593. DOI:10.1002/embj.201386474 |
[12] | Macvicar TD, Lane JD. Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation[J]. J Cell Sci, 2014, 127 (10): 2313–2325. DOI:10.1242/jcs.144337 |
[13] | Liu L, Sakakibara K, Chen Q, et al. Receptor-mediated mitophagy in yeast and mammalian systems[J]. Cell Res, 2014, 24 (7): 787–795. DOI:10.1038/cr.2014.75 |
[14] | Nardin A, Schrepfer E, Ziviani E. Counteracting PINK/Parkin deficiency in the activation of mitophagy:A potential therapeutic intervention for Parkinson's disease[J]. Curr Neuropharmacol, 2016, 14 (3): 250–259. DOI:10.2174/1570159X13666151030104414 |
[15] | Heo JM, Ordureau A, Paulo JA, et al. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy[J]. Mol Cell, 2015, 60 (1): 7–20. DOI:10.1016/j.molcel.2015.08.016 |
[16] | Ghazaleh A, Julia S, Matthew JL, et al. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin[J]. J Cell Biol, 2014, 206 (5): 655–670. DOI:10.1083/jcb.201401070 |
[17] | Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin[J]. Proc Natl Acad Sci U S A, 2010, 107 (11): 5018–5023. DOI:10.1073/pnas.0913485107 |
[18] | Wang H, Song P, Du L, et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation:implication of dysregulated mitochondrial dynamics in Parkinson disease[J]. J Biol Chem, 2011, 286 (13): 11649–11658. DOI:10.1074/jbc.M110.144238 |
[19] | Lazarou M, Sliter Da, Kane La, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J]. Nature, 2015, 524 (7565): 309–314. DOI:10.1038/nature14893 |
[20] | Gao J, Qin S, Jiang C. Parkin-induced ubiquitination of Mff promotes its association with P62/SQSTM1 during mitochondrial depolarization[J]. Acta Biochim Biophys Sin(Shanghai), 2015, 47 (7): 522–529. |
[21] | Ney PA. Mitochondrial autophagy:Origins, significance, and role of BNIP3 and NIX[J]. Biochim Biophys Acta, 2015, 1853 (10 Pt B): 2775–2783. |
[22] | Hanna RA, Quinsay MN, Orogo AM, et al. Microtubule-associated protein 1 light chain 3(LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy[J]. J Biol Chem, 2012, 287 (23): 19094–19104. DOI:10.1074/jbc.M111.322933 |
[23] | Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells[J]. Nature, 2008, 454 (7201): 232–235. DOI:10.1038/nature07006 |
[24] | Wu LY, Ma ZM, Fan XL, et al. The anti-necrosis role of hypoxic preconditioning after acute anoxia is mediated by aldose reductase and sorbitol pathway in PC12 cells[J]. Cell Stress Chaperones, 2010, 15 (4): 387–394. DOI:10.1007/s12192-009-0153-6 |
[25] | Chen G, Han Z, Feng D, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy[J]. Mol Cell, 2014, 54 (3): 362–377. DOI:10.1016/j.molcel.2014.02.034 |
[26] | Wu H, Xue D, Chen G, et al. The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy[J]. Autophagy, 2014, 10 (10): 1712–1725. DOI:10.4161/auto.29568 |
[27] | Lu W, Sun J, Yoon JS, et al. Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis[J]. PLoS One, 2016, 11 (1): e0147792. DOI:10.1371/journal.pone.0147792 |
[28] | Van Humbeeck C, Cornelissen T, Hofkens H, et al. Parkin interacts with Ambra1 to induce mitophagy[J]. J Neurosci, 2011, 31 (28): 10249–10261. DOI:10.1523/JNEUROSCI.1917-11.2011 |
[29] | Strappazzon F. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1[J]. Cell Death Differ, 2015, 22 (3): 419–432. DOI:10.1038/cdd.2014.139 |
[30] | Chu CT, Ji J, Dagda RK, et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells[J]. Nat Cell Biol, 2013, 15 (10): 1197–1205. DOI:10.1038/ncb2837 |
[31] | Awasthi M, Singh S, Pandey VP, et al. Alzheimer's disease:An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products[J]. J Neurol Sci, 2016, 361 : 256–271. DOI:10.1016/j.jns.2016.01.008 |
[32] | Reddy PH, Manczak M, Mao P, et al. Amyloid-beta and mitochondria in aging and Alzheimer's disease:implications for synaptic damage and cognitive decline[J]. J Alzheimers Dis, 2010, 20 (Suppl 2): S499–S512. |
[33] | Carvalho C, Santos MS, Oliveira CR, et al. Alzheimer's disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers[J]. Biochim Biophys Acta, 2015, 1852 (8): 1665–1675. DOI:10.1016/j.bbadis.2015.05.001 |
[34] | Du H, Guo L, Yan S, et al. Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model[J]. Proc Natl Acad Sci U S A, 2010, 107 (43): 18670–18675. DOI:10.1073/pnas.1006586107 |
[35] | Khandelwal PJ, Herman AM, Hoe HS, et al. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models[J]. Hum Mol Genet, 2011, 20 (11): 2091–2102. DOI:10.1093/hmg/ddr091 |
[36] | Wang X, Wang W, Li L, et al. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease[J]. Biochim Biophys Acta, 2014, 1842 (8): 1240–1247. DOI:10.1016/j.bbadis.2013.10.015 |
[37] | Deng H, Dodsonmw H, Huang H, et al. The Parkinsons disease genes Pink1 and Parkin promote mitochondrial fisson and inhibit fusion in drosophia[J]. Proc Natl Acad Sci U S A, 2008, 105 (38): 14503–14508. DOI:10.1073/pnas.0803998105 |
[38] | Trinh J, Farrer M. Advances in the genetics of Parkinson disease[J]. Nat Rev Neurol, 2013, 9 (8): 445–454. |
[39] | Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nat Cell Biol, 2010, 12 (2): 119–131. DOI:10.1038/ncb2012 |
[40] | Dagda RK, Zhu J, Chu CT. Mitochondrial kinases in Parkinson's disease:converging insights from neurotoxin and genetic models[J]. Mitochondrion, 2009, 9 (5): 289–298. DOI:10.1016/j.mito.2009.06.001 |
[41] | Sampaio-Marques B, Felgueiras C, Silva A, et al. SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2(Sir2)-mediated mitophagy[J]. Autophagy, 2012, 8 (10): 1494–1509. DOI:10.4161/auto.21275 |
[42] | Sanders LH, Mccoy J, Hu X, et al. Mitochondrial DNA damage:molecular marker of vulnerable nigral neurons in Parkinson's disease[J]. Neurobiol Dis, 2014, 70 : 214–223. DOI:10.1016/j.nbd.2014.06.014 |
[43] | Pandey M, Varghese M, Sindhu KM, et al. Mitochondrial NAD+-linked State 3 respiration and complex-Ⅰ activity are compromised in the cerebral cortex of 3-nitropropionic acid-induced rat model of Huntington's disease[J]. J Neurochem, 2008, 104 (2): 420–434. |
[44] | Shirendeb U, Reddy AP, Manczak M, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease:implications for selective neuronal damage[J]. Hum Mol Genet, 2011, 20 (7): 1438–1455. DOI:10.1093/hmg/ddr024 |
[45] | Kim J, Moody JP, Edgerly CK, et al. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease[J]. Hum Mol Genet, 2010, 19 (20): 3919–3935. DOI:10.1093/hmg/ddq306 |
[46] | Pedrini S, Sau D, Guareschi S, et al. ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2[J]. Hum Mol Genet, 2010, 19 (15): 2974–2986. DOI:10.1093/hmg/ddq202 |
[47] | Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation[J]. Proc Natl Acad Sci U S A, 2014, 111 (42): E4439–E4448. DOI:10.1073/pnas.1405752111 |
[48] | Lin MY, Sheng ZH. Regulation of mitochondrial transport in neurons[J]. Exp Cell Res, 2015, 334 (1): 35–44. DOI:10.1016/j.yexcr.2015.01.004 |
[49] | Shutt TE, Mcbride HM. Staying cool in difficult times:mitochondrial dynamics, quality control and the stress response[J]. Biochim Biophys Acta, 2013, 1833 (2): 417–424. DOI:10.1016/j.bbamcr.2012.05.024 |
[50] | Shi R, Zhu S, Li V, et al. BNIP3 Interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke[J]. CNS Neurosci Ther, 2014, 20 (12): 1045–1055. DOI:10.1111/cns.2014.20.issue-12 |
[51] | Cavallucci V, Bisicchia E, Cencioni MT, et al. Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons[J]. Cell Death Dis, 2014, 5 : e1545. DOI:10.1038/cddis.2014.511 |
[52] | Giorgi FS, Biagioni F, Lenzi P, et al. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations[J]. J Neural Transm (Vienna), 2015, 122 (6): 849–862. DOI:10.1007/s00702-014-1312-1 |
[53] | 邱小雪. 癫癎持续状态大鼠海马线粒体分裂、融合变化的研究[D]. 济南: 山东大学, 2013. |
[54] | Frye RE. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder[J]. Epilepsy Behav, 2015, 47 : 147–157. DOI:10.1016/j.yebeh.2014.08.134 |
[55] | 朱暄. MELAS综合征的临床、影像、病理、基因学分析及与线粒体自噬的相关研究[D]. 南昌: 南昌大学, 2014. |