中国当代儿科杂志  2017, Vol. 19 Issue (7): 837-840   PDF    
IgA血管炎免疫学发病机制的研究进展
刘雅婷    综述, 卢思广    审校    
徐州医科大学附属连云港医院儿科, 江苏 连云港 222000
摘要: IgA血管炎(IgAV)是儿童最常见的白细胞碎裂性小血管炎,主要累及皮肤小血管、关节、消化道及肾脏,其发病机制并不完全明确。目前认为是在遗传的基础上,受环境影响,引起自身免疫系统功能紊乱,IgA为主的免疫复合物在小动脉壁沉积而发病。该文主要探讨免疫因素在IgAV发病机制中的作用。
关键词血管炎     发病机制     免疫    
Research advances in immunological pathogenesis of immunoglobulin A vasculitis
LIU Ya-Ting, LU Si-Guang    
Department of Pediatrics, Lianyungang Hospital Affliated to Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
Abstract: Immunoglobulin A (IgA) vasculitis is the most common leukocytoclastic small-vessel vasculitis in children and mainly involves the small vessels in the skin, joints, digestive tract, and kidneys. Its pathogenesis is still unclear. Currently, it is believed that environmental factors can cause autoimmune dysfunction and lead to the deposition of IgA-containing immune complexes on the wall of arterioles on the basis of genetic factors. This article reviews the research advances in the role of immune factors in the pathogenesis of IgA vasculitis.
Key words: Vasculitis     Pathogenesis     Immunity    

IgA血管炎(immunoglobulin A vasculitis, IgAV)既往称之为过敏性紫癜(Henoch-Schönlein purpura, HSP),好发于学龄前及学龄期儿童,多在冬春季发病[1-2]。它是儿童最常见的由免疫复合物介导的小血管炎,以IgA沉积于血管壁和肾小球系膜为特征,累及皮肤、消化道、关节、肾脏等多个器官[3]。IgAV的诱发因素复杂多变,包括食物、药物、感染、疫苗等[4]。流行病学调查发现,30%~65%的IgAV患者有前驱上呼吸道感染史,感染是IgAV的重要诱发因素,病原体包括细菌、病毒、原虫等[1, 4]

虽然大部分IgAV是散发病例,但IgAV的家族聚集性也曾被报道[5]。迄今为止,为了找出IgAV易感基因,进行了家族性病例的全基因组关联研究,筛选出的易感基因有很多[4, 6]。在遗传易感性因素基础之上,免疫学机制也参与IgAV发病,但确切的机制不完全清楚,以下对近年有关IgAV免疫学发病机制的研究进行综述。

1 体液免疫 1.1 免疫球蛋白IgA及其异常糖基化

研究发现,IgAV病人急性期血清IgA水平升高;组织活检可见IgA沉积[7-8]。IgA沉积于肾脏组织伴肾脏损害时,患者可出现血尿、蛋白尿,则称之为IgAV肾炎(IgA-vasculitis with nephritis, IgAVN)。丁艳等[9]发现IgAVN患儿的血清IgA水平升高更为显著,提出IgAV患者的血清IgA水平可能预测肾损害发生[10]

B细胞根据其表面分子类型可分为不同的亚群。激活的B细胞可以分化为CD38+浆细胞,产生抗体和多种细胞因子。Hu等[11]发现,IgAVN患者存在新型B细胞亚群,并将其定义为CD38+CD19+B细胞。IgAVN患者的肾小球系膜区存在IgA免疫复合物沉积,血清IgA浓度和CD38+CD19+B细胞数呈正相关,CD38+CD19+B细胞数与24 h尿蛋白呈正相关、与肾小球滤过率呈负相关[11]。因此,CD38+CD19+B细胞可能参与IgAVN发病机制,而且可作为评价疾病严重程度的生物标记物[11]

IgA分子存在IgA1和IgA2亚类,IgA1占血清IgA的80%~90%。IgA1重链的铰链区有5~6个与O相连的糖基化位点,但IgA2没有。IgAV中IgA1的铰链区出现异常糖基化。Kiryluk等[12]证实血清半乳糖缺陷IgA1(Gd-IgA1)水平在IgAV患儿中明显升高。异常IgA1末端的多聚糖,能被自身抗体识别,引起IgA聚集,形成大分子免疫复合物。费文君等[13]研究发现,IgAV患儿血清异常糖基化的IgA1可能通过caspase介导的凋亡途径诱发内皮细胞凋亡。

1.2 血浆IgE升高和嗜酸性粒细胞激活

Pan等[14]对1 232例IgAVN患儿的研究发现,尿蛋白含量及蛋白尿持续时间和IgE水平呈正相关,推测可能与IgE介导的Ⅰ型超敏反应、毛细血管通透性增加、电荷屏障减弱有关,提出IgE增高是引起IgAVN蛋白尿的原因之一。Kawasaki等[15]发现,与IgAV无肾炎组相比,IgAVN组血清嗜酸细胞阳离子蛋白和IL-5的水平较高。陈瑜等[16]也发现IgAVN患者血清嗜酸细胞阳离子蛋白升高。因此,嗜酸性粒细胞激活、血清嗜酸细胞阳离子蛋白增高可能在IgAVN的发生发展中起重要作用。

1.3 自身抗体

以IgA为主的免疫复合物沉积被认为是IgAV特异性的病理改变,但也发现其他一些自身抗体与IgAV发病有关。

抗磷脂抗体包括抗心磷脂抗体(anticardiolipin antibody, ACLA)、狼疮抗凝物(lupus anticoagulant, LAC)等,是一组与蛋白磷脂抗原发生免疫反应的特异性抗体,有IgG、IgM和IgA三种类型。Liu等[17]研究发现,426例IgAV患儿中有46例存在中枢神经系统受累,这部分患儿血清和脑脊液的LAC和ACLA明显升高,推测抗磷脂抗体水平升高与IgAV的中枢神经系统受累相关。

有报道IgAV患者的IgM类抗磷脂酰丝氨酸-凝血酶原复合物(anti-PSPT)抗体阳性[18]。Kimura等[19]发现IgAV患者中存在肾损害者IgA类抗心磷脂抗体水平升高,有消化道症状者IgM类anti-PSPT水平增高。

抗中性粒细胞胞浆抗体(anti-neutrophil cytoplasmic antibodies, ANCA)直接作用于中性粒细胞胞浆,包括抗蛋白水解酶-3抗体和抗髓过氧化物酶(myeloperoxidase, MPO)抗体。Yu等[20]报道一例76岁新月体性IgAVN患者,在肾小球系膜区和毛细血管下有IgA沉积,以及MPO-ANCA阳性。

2 细胞免疫及炎性因子

一些促炎细胞因子参与IgAV发生,刺激内皮细胞产生趋化因子,诱导内皮细胞的粘附分子表达,促使粘附分子粘附于血管内皮,吸引白细胞向炎症部位募集[21-22]。在IgAV中存在辅助性T淋巴细胞(helper T cells, Th)亚群Th1/Th2的失衡,且Th2占优势[14]

2.1 Th1相关细胞因子

IFN-γ是由Th1细胞分泌的细胞因子,不仅可以活化Th1细胞,还可以抑制Th2细胞分化。有学者发现,IgAV急性期IFN-γ水平明显降低,使CTL和NK细胞活性降低,以及对外来抗原的清除能力下降,从而导致免疫应答异常和免疫损伤[23]。IL-2是T细胞生长因子,对T细胞增殖分化有重要作用。IgAV患儿血清IL-2水平下降,T细胞数量也下降[14]

2.2 Th2相关细胞因子

IgAV患者存在Th2活化及其细胞因子水平升高,且Th2细胞的转录因子GATA-3(GATA-binding protein 3)表达水平也升高。Luo等[24]研究证实,GATA-3 mRNA表达增加导致Th1/Th2平衡向Th2免疫移动,IgAV患者的IL-4、IL-6水平增高,且IL-4水平增加与CD4+T细胞中组蛋白H3高乙酰化呈正相关,而组蛋白的异常修饰可能导致IL-4启动子染色质构型更开放,从而促进IL-4基因转录。

Toll样受体(Toll-like receptors, TLR)是涉及跨膜信号转导的一类细胞表面受体,它能够直接识别和结合病原体相关分子模式,然后在宿主细胞中引发信号转导。髓样分化因子88(myeloid differentiation factor 88, MYD88)是TLR信号通路中的关键衔接分子和下游信号转导的关键靶分子。Chang等[25]发现,IgAV患儿的血清IL-4、IL-17、TLR6蛋白和MYD88 mRNA表达水平均显著升高,且TLR6的表达与血清IL-4、IL-17、MYD88 mRNA表达呈显著正相关。另外,还发现IgAV患儿的TLR2和TLR4表达也升高,并与血清IL-4、IL-6水平呈正相关,TLR2和TLR4的过表达可导致IgAV患儿肾脏损害[26]。单核吞噬细胞的TLR激活后通过MYD88依赖性信号转导途径激活转录因子如干扰素调节因子3、7和NF-κB等,促进细胞因子的合成和T细胞活化,上调Th2和Th17的免疫应答以介导IgAV的免疫发病机制[27]

最近,Chen等[28]报道IgAV患者的内皮细胞大量表达高迁移率族蛋白B1(human high-mobility group box-1, HMGB1),推测HMGB1在IgAV的发病机制中可能起到重要作用。Kimura等[19]研究显示,IgAV急性期的血清IL-6水平增高。而IL-6可引起血管内皮细胞的增殖和迁移,促进B细胞增殖及抗体生成增加并沉积于肾小球系膜区;还能刺激Th2细胞活化增殖,使肾小球系膜区组织增生及纤维化,导致肾功能损害和IgAVN[26, 29]

有研究表明,人脐静脉内皮细胞经活动期IgAV患儿的血清干预后,IL-8和TNF-a水平明显升高,提示IgAV患儿的IgA抗内皮细胞抗体可与内皮细胞结合,并通过MEK/ERK信号通路刺激内皮细胞产生IL-8[30-31]。IL-8主要对中性粒细胞产生强烈的趋化和激活作用,使中性粒细胞组织浸润并释放活性产物,导致炎症反应。IL-8基因多态性对IgAV发生发展的影响尚存在争议。有研究表明,IL-8基因+2767 G/A的等位基因A可增加IgAV肾损害的发生风险[32];而IL-8基因+781 C/T的多态性与IgAV易感性则无明显相关性[33]

TNF-a是重要的前炎性细胞因子,可刺激内皮成纤维细胞或肾小球系膜细胞有丝分裂和血管形成,诱发细胞间粘附分子1升高,并引起肾小球屏障受损、通透性增加,导致蛋白尿发生[21]。最近,Ding等[34]观察到TNF-α(+308G/A)基因多态性与儿童IgAV相关,TNF-α的A/A纯合性可能是IgAV的遗传诱发因素,启动子中的308A等位基因载体与启动子的高活性相关,可以增加体内TNF-α的产生。

2.3 Th17细胞和IL-17

Th17/Treg失衡也与IgAV发病密切相关[35]。Th17细胞通过产生IL-17在自身免疫性疾病的发生发展中起重要作用。IL-17可促进趋化因子和其他炎性细胞因子的表达。Th17细胞比例及IL-17水平在IgAV患者中明显升高[22]。IgAV患儿肾活检标本中IFN-γ和IL-17表达也明显升高;并且与肾脏受累严重程度相关[36]

Yang等[37]发现,调节性B细胞在IgAVN中明显减少,并且与Th17/Treg成负相关,推断调节性B细胞可能通过调节Th17/Treg平衡参与IgAVN的发病。

2.4 其他细胞因子

Midkine(MK)是一种肝素结合生长因子,可促进炎症细胞组织浸润,诱导促炎细胞因子、细胞外基质成分和金属蛋白酶的表达。Su等[38]研究表明,IgAV患儿急性期的血清MK水平增高,与IL-4、IL-6、IL17A水平呈正相关,且肾脏受累患儿的MK水平高于无肾脏受累者,推测MK可通过对促炎细胞因子的调节参与IgAV的发病,MK水平检测对于IgAV的诊断和IgAVN的预测有帮助。

基质金属蛋白酶(matrix metalloproteinase, MMP)活性增高引起细胞外基质加速分解,可引起严重的风湿性疾病和系统性血管炎[39]。IgAV急性期的血清MMP-2和MMP-9活性均明显升高[40]。Shin等[41]研究也表明,急性期IgAV的MMP-9、MMP-10、MMP-13等明显升高。然而,Erol等[42]研究发现,血清MMP-9水平在IgAV、IgAVN和正常对照组之间的差异并无统计学意义,但是IgAVN组尿液中MMP-9水平显著升高,推测尿液MMP-9可能作为早期判断IgAV是否合并肾脏损害的生物标记物。IgAV易感性与MMP-9基因的4种单核苷酸多态性有关;IgAV患者rs17576的G等位基因出现频率较高,而rs2236416的A等位基因出现频率较低[39]

3 补体系统

补体系统有3种激活方式,分别是经典激活、旁路激活、凝集素激活。

Pentraxin 3(PTX3)是一种补体相关蛋白,与补体激活的经典途径相关。Ge等[43]研究发现,血浆PTX3浓度在IgAV、IgAVN患儿明显升高,以IgAVN患儿更高;PTX3与C反应蛋白(CRP)、尿微量蛋白呈正相关。Yüksel等[44]研究也认为,IgAV患者的PTX3浓度升高可能导致肾损。因此,PTX3可能作为预测IgAV肾损害的生物标记物。

最近,Yang等[45]研究发现,一部分补体通过旁路途径被激活,导致血浆C3a和C5a水平增高,特别是C5a激活皮肤小血管的内皮细胞参与IgAV发病。

凝集素途径可以通过IgA1或IgA2与甘露糖结合凝集素(mannan-binding lectin, MBL)的结合而激活[46]。Hisano等[47]研究发现,IgAVN患儿肾活检标本中肾小球系膜区IgA1/IgA2共沉积,也检测到补体成分和MBL,推测凝集素途径在IgAVN中可能促进了肾小球病变。

综上所述,IgAV发病可能是在遗传易感性的基础上,受到环境或者前驱感染的病原体刺激,激活体内适应性免疫系统,特异性抗体与异常糖基化的IgA1结合,在体液及细胞免疫的相互作用之下,导致皮肤、消化道、肾脏等小血管壁IgA1免疫复合物沉积及炎性细胞浸润。

参考文献
[1] Piram M, Mahr A. Epidemiology of immunoglobulin A vasculitis (Henoch-Schönlein):current state of knowledge[J]. Curr Opin Rheumatol, 2013, 25(2): 171–178. DOI:10.1097/BOR.0b013e32835d8e2a
[2] 刘丽君, 于静, 李宇宁. 儿童过敏性紫癜325例回顾性分析[J]. 中国当代儿科杂志, 2015, 17(10): 1079–1083. DOI:10.7499/j.issn.1008-8830.2015.10.012
[3] Trnka P. Henoch-Schönlein purpura in children[J]. J Paediatr Child Health, 2013, 49(12): 995–1003. DOI:10.1111/jpc.2013.49.issue-12
[4] Rigante D, Castellazzi L, Bosco A, et al. Is there a crossroad between infections, genetics, and Henoch-Schönlein purpura[J]. Autoimmun Rev, 2013, 12(10): 1016–1021. DOI:10.1016/j.autrev.2013.04.003
[5] Shin JI, Lee JS. Familial clusturing of Henoch-Schönlein purpura or IgA nephropathy:genetic background or environmental triggers[J]. Pediatr Dermatol, 2008, 25(6): 651. DOI:10.1111/pde.2008.25.issue-6
[6] He X, Yu C, Zhao P, et al. The genetics of Henoch-Schönlein purpura:a systematic review and meta-analysis[J]. Rheumatol Int, 2013, 33(6): 1387–1395. DOI:10.1007/s00296-012-2661-4
[7] Xie J, Liu Y, Wang L, et al. Expansion of circulating T follicular helper cells in children with acute Henoch-Schönlein purpura[J]. J Immunol Res, 2015, 2015: 742535.
[8] Johnson EF, Wetter DA, Lehman JS, et al. Leukocytoclastic vasculitis in children:clinical characteristics, subtypes, causes and direct immunofluorescence fndings of 56 biopsy-confrmed cases[J]. J Eur Acad Dermatol Venereol, 2016, 31(3): 544–549.
[9] 丁艳, 尹薇, 何学莲, 等. 儿童过敏性紫癜急性期免疫功能探讨[J]. 中国免疫学杂志, 2013, 29(5): 518–521.
[10] 穆云, 孙朝, 王亮, 等. 生物学标志物对儿童过敏性紫癜诊断价值的评价[J]. 中国当代儿科杂志, 2015, 17(9): 918–921. DOI:10.7499/j.issn.1008-8830.2015.09.006
[11] Hu X, Tai J, Qu Z, et al. A lower proportion of regulatory B cells in patients with Henoch-Schönlein purpura nephritis[J]. PLoS One, 2016, 11(3): e0152368. DOI:10.1371/journal.pone.0152368
[12] Kiryluk K, Moldoveanu Z, Sanders JT, et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis[J]. Kidney Int, 2011, 80(1): 79–87. DOI:10.1038/ki.2011.16
[13] 费文君, 闫波, 袁丽萍, 等. 过敏性紫癜患儿血清IgA1对人脐血管内皮细胞凋亡影响的实验研究[J]. 中华儿科杂志, 2013, 51(1): 42–46.
[14] Pan YX, Ye Q, Shao WX, et al. Relationship between immune parameters and organ involvement in children with HenochSchönlein purpura[J]. PLoS One, 2014, 9(12): e115261. DOI:10.1371/journal.pone.0115261
[15] Kawasaki Y, Hosoya M, Suzuki H. Possible pathologenic role of interleukin-5 and eosino cationic protein in Henoch-Schönlein purpura nephritis[J]. Pediatr Int, 2005, 47(5): 512–517. DOI:10.1111/ped.2005.47.issue-5
[16] 陈瑜, 周建华, 吴衡生, 等. 肥大细胞和嗜酸性阳离子蛋白在过敏性紫癜性肾炎发病中的作用[J]. 中华儿科杂志, 2006, 44(6): 407–410.
[17] Liu A, Zhang H. Detection of antiphospholipid antibody in children with Henoch-Schönlein purpura and central nervous system involvement[J]. Pediatr Neurol, 2012, 47(3): 167–170. DOI:10.1016/j.pediatrneurol.2012.05.024
[18] Kawakami T, Takeuchi S, Soma Y. The presence of IgM antiphospholipid antibodies in patients with Henoch-Schönlein purpura and recurrent palpable purpura[J]. Arch Dermatol, 2011, 147(8): 986–988. DOI:10.1001/archdermatol.2011.207
[19] Kimura S, Takeuchi S, Soma Y, et al. Raised serum levels of interleukins 6 and 8 and antiphospholipid antibodies in an adult patient with Henoch-Schönlein purpura[J]. Clin Exp Dermatol, 2013, 38(7): 730–736. DOI:10.1111/ced.2013.38.issue-7
[20] Yu JH, Lee KB, Lee JE, et al. A case of elderly-onset crescentic Henoch-Schönlein purpura nephritis with hypocomplementemia and positive MPO-ANCA[J]. J Korean Med Sci, 2012, 27(8): 957–960. DOI:10.3346/jkms.2012.27.8.957
[21] Chen T, Guo ZP, Li MM, et al. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK), an important mediator of endothelial inflammation, is associated with the pathogenesis of Henoch-Schonlein purpura[J]. Clin Exp Immunol, 2011, 166(1): 64–71. DOI:10.1111/j.1365-2249.2011.04442.x
[22] Li YY, Li CR, Wang GB, et al. Investigation of the change in CD4+ T cell subset in children with Henoch-Schönlein purpura[J]. Rheumatol Int, 2012, 32(12): 3785–3792. DOI:10.1007/s00296-011-2266-3
[23] Del Vecchio GC, Penza R, Altomare M, et al. Cytokine pattern and endothelium damage markers in Henoch-Schönlein purpura[J]. Immunopharmacol Immunotoxicol, 2008, 30(3): 623–629. DOI:10.1080/08923970801973646
[24] Luo S, Liang G, Zhang P, et al. Aberrant histone modifcations in peripheral blood mononuclear cells from patients with HenochSchönlein purpura[J]. Clin Immunol, 2013, 146(3): 165–175. DOI:10.1016/j.clim.2012.12.009
[25] Chang H, Cao Y, Lin YI, et al. Association between toll-like receptor 6 expression and auxiliary T cells in the peripheral blood of pediatric patients with allergic purpura[J]. Exp Ther Med, 2015, 10(4): 1536–1540.
[26] Chang H, Zhang QY, Lin Y, et al. Correlation of TLR2 and TLR4 expressions in peripheral blood mononuclear cells to Th1-and Th2-type immune responses in children with HenochSchönlein purpura[J]. Int J Clin Exp Med, 2015, 8(8): 13532–13539.
[27] Kawasaki T, Kawai T. Toll-like receptor signaling pathways[J]. Front Immunol, 2014, 5: 461.
[28] Chen T, Guo ZP, Wang WJ, et al. Increased serum HMGB1 levels in patients with Henoch-Schönlein purpura[J]. Exp Dermatol, 2014, 23(6): 419–423. DOI:10.1111/exd.2014.23.issue-6
[29] 余艳红, 潘凯丽, 李琦, 等. 过敏性紫癜患儿血、尿标本中IL-13受体α2水平及其他细胞因子的检测分析[J]. 中国当代儿科杂志, 2009, 11(1): 37–40.
[30] 吴琳, 袁丽萍, 费文君, 等. 过敏性紫癜患儿血清对人脐静脉内皮细胞的影响及甲基泼尼松龙的保护作用[J]. 中国当代儿科杂志, 2012, 14(1): 59–63.
[31] Yang YH, Huang YH, Lin YL, et al. Circulating IgA from acute stage of childhood Henoch-Schönlein purpura can enhance endothelial interleukin (IL)-8 production through MEK/ERK signalling pathway[J]. Clin Exp Immunol, 2006, 144(2): 247–253. DOI:10.1111/cei.2006.144.issue-2
[32] Tabel Y, Mir S, Berdeli A. Interleukin 8 gene 2767 A/G polymorphism is associated with increased risk of nephritis in children with Henoch-Schönlein purpura[J]. Rheumatol Int, 2012, 32(4): 941–947. DOI:10.1007/s00296-010-1739-0
[33] Xu H, Pan YX, Zhang J, et al. Lack of association between interleukin-8 gene +781 C/T polymorphism and HenochSchönlein purpura in childhood[J]. Iran J Allergy Asthma Immunol, 2016, 15(3): 237–243.
[34] Ding GX, Wang CH, Che RC, et al. Heat shock protein 70-2 and tumor necrosis factor-α gene polymorphisms in Chinese children with Henoch-Schönlein purpura[J]. World J Pediatr, 2016, 12(1): 49–54. DOI:10.1007/s12519-015-0048-9
[35] Chen O, Zhu XB, Ren H, et al. The imbalance of Th17/Treg in Chinese children with Henoch-Schönlein purpura[J]. Int Immunopharmacol, 2013, 16(1): 67–71. DOI:10.1016/j.intimp.2013.03.027
[36] Gülhan B, Orhan D, Kale G, et al. Studying cytokines of T helper cells in the kidney disease of IgA vasculitis (HenochSchönlein purpura)[J]. Pediatr Nephrol, 2015, 30(8): 1269–1277. DOI:10.1007/s00467-015-3051-4
[37] Yang B, Tan X, Xiong X, et al. Effect of CD40/CD40L signaling on IL-10-producing regulatory B cells in Chinese children with Henoch-Schönlein purpura nephritis[J]. Immunol Res, 2016, doi:10.1007/s12026-016-8877-8.
[38] Su Z, Lv X, Liu Y, et al. Circulating midkine in children with Henoch-Schönlein purpura:Clinical implications[J]. Int Immunopharmacol, 2016, 41: 145. DOI:10.1016/j.intimp.2016.08.039
[39] Xu ED, Xiao YF, Wang JJ, et al. Association study between matrix metalloproteinase-9 gene (MMP9) polymorphisms and the risk of Henoch-Schönlein purpura in children[J]. Genet Mol Res, 2016, 15(2). doi:10.4238/gmr.15028095.
[40] Mahajan N, Bisht D, Dhawan V, et al. Transcriptional expression and gelatinolytic activity of matrix metalloproteinases in Henoch-Schonlein purpura[J]. Acta Paediatr, 2010, 99(8): 1248–1252. DOI:10.1111/apa.2010.99.issue-8
[41] Shin JI, Song KS, Kim H, et al. The gene expression profle of matrix metalloproteinases and their inhibitors in children with Henoch-Schönlein purpura[J]. Br J Dermatol, 2011, 164(6): 1348–1355. DOI:10.1111/j.1365-2133.2011.10295.x
[42] Erol M, Yigit O, Tasdemir M, et al. Potential of serum and urinary matrix metalloproteinase-9 levels for the early detection of renal involvement in children with Henoch-Schönlein purpura[J]. Iran J Pediatr, 2016, 26(4): e6129.
[43] Ge W, Wang HL, Sun RP. Pentraxin 3 as a novel early biomarker for the prediction of Henoch-Schönlein purpura nephritis in children[J]. Eur J Pediatr, 2014, 173(2): 213–218. DOI:10.1007/s00431-013-2150-0
[44] Yüksel S, Çağlar M, Evrengül H, et al. Could serum pentraxin 3 levels and IgM deposition in skin biopsies predict subsequent renal involvement in children with Henoch-Schönlein purpura[J]. Pediatr Nephrol, 2015, 30(6): 969–974. DOI:10.1007/s00467-014-3026-x
[45] Yang YH, Tsai IJ, Chang CJ, et al. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood HenochSchönlein purpura[J]. PLoS One, 2015, 10(3): e6129.
[46] Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, et al. Human IgA activates the complement system via the mannan-binding lectin pathway[J]. J Immunol, 2001, 167(5): 2861–2868. DOI:10.4049/jimmunol.167.5.2861
[47] Hisano S, Matsushita M, Fujita T, et al. Activation of the lectin complement pathway in Henoch-Schönlein purpura nephritis[J]. Am J Kidney Dis, 2005, 45(2): 295–302. DOI:10.1053/j.ajkd.2004.10.020
[48] Constantinides MG, McDonald BD, Verhoef PA, et al. A committed precursor to innate lymphoid cells[J]. Nature, 2014, 508(7496): 397–401. DOI:10.1038/nature13047
[49] He X, Yin W, Ding Y, et al. Higher serum angiotensinogen is an indicator of IgA vasculitis with nephritis revealed by comparative proteomes analysis[J]. PLoS One, 2015, 10(6): e6129.
[50] Cayci FS, Ekim M, Egin Y, et al. An analysis of the levels of the soluble form of the endothelial protein C receptor in children with Henoch-Schönlein purpura[J]. Pediatr Hematol Oncol, 2015, 32(2): 115–122. DOI:10.3109/08880018.2013.860648
[51] Li Y, Sui X, Zhu H, et al. Histopathological and immunological changes during the acute and recovery phase in HenochSchönlein purpura rabbit model[J]. Arch Dermatol Res, 2017, 309(1): 21–30. DOI:10.1007/s00403-016-1694-z