中国当代儿科杂志  2017, Vol. 19 Issue (8): 945-948   PDF    
BIM基因与儿童急性淋巴细胞白血病对糖皮质激素耐药的相关性
许金云    综述, 罗建明    审校     
广西医科大学第一附属医院儿科, 广西 南宁 530021
通信作者: 罗建明。
摘要: 急性淋巴细胞白血病(ALL)是儿童时期最常见的恶性血液系统疾病。糖皮质激素作为ALL化疗方案中的主要用药,可通过多种途径诱导白血病细胞的凋亡,但仍有约10%的儿童ALL对糖皮质激素不敏感。研究发现糖皮质激素通过上调BIM基因表达介导ALL细胞的凋亡,BIM基因与儿童ALL对糖皮质激素耐药有关。本综述概括了近年关于儿童急性淋巴细胞白血病对糖皮质激素耐药相关研究,主要包括BIM基因及其表达产物在该过程中的作用。
关键词BIM基因     糖皮质激素     急性淋巴细胞白血病     耐药性     儿童    
Association between BIM gene and glucocorticoid resistance in children with acute lymphoblastic leukemia
XU Jin-Yun, LUO Jian-Ming     
Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
Corresponding author: LUO Jian-Ming, E-mail:jmluo@aliyun.com
Abstract: Acute lymphoblastic leukemia (ALL) is the most common malignant hematological disease in childhood. Glucocorticoids are frequently used in the chemoradiotherapy regimen for ALL and can induce the apoptosis of ALL cells through several signaling pathways, but about 10% of ALL children have poor response to glucocorticoids. Studies have revealed that glucocorticoids induce the apoptosis of ALL cells by upregulating the expression of BIM gene, and BIM gene is associated with glucocorticoid resistance in childhood ALL. This article reviews the recent studies on glucocorticoid resistance in childhood ALL, especially the role of BIM and its expression products in this process.
Key words: BIM gene     Glucocorticoid     Acute lymphoblastic leukemia     Drug resistance     Child    

急性淋巴细胞白血病(acute lymphoblastic leukemia, ALL)是儿童时期最常见的恶性肿瘤,目前其治疗仍以联合化疗为主[1-3]。儿童ALL的治疗效果明显优于成人,近年来欧美发达国家报道儿童ALL的5年生存率已达90%[3-4]。虽然随着化疗方案的不断完善儿童ALL的无病生存率明显增加,但部分对常规化疗不敏感的患儿仍需引起我们关注。针对这部分患者往往需要增加药物剂量、种类以及延长化疗时间,然而化疗方案增强又增加药物副作用,降低生活质量。所以,对于耐药ALL的治疗仍是白血病治疗中的一个棘手问题。近年来相关研究证实BIM基因是一种能够介导淋巴细胞凋亡的促凋亡基因,该基因及其表达产物与ALL对糖皮质激素(glucocorticoid, GC)耐药有关[5-7]

1 GC在儿童白血病治疗过程中的应用

GC在儿童ALL的化疗中广泛应用,是目前化疗方案中的关键药物之一。据报道,GC应用于儿童ALL的治疗已经有超过50年的历史[8],且在激素诱导阶段结束后通过外周血及骨髓的原始细胞计数可判断ALL的预后[3, 8-11]。然而关于儿童ALL对GC耐药的报道并不少见,针对这类患儿通过有效措施恢复其对GC的敏感性能明显改善预后[7, 12]。说明GC在儿童ALL的治疗过程中发挥重要作用且与ALL的预后相关,采取有效的干预措施增加GC耐药ALL患儿对激素的敏感性可能是改善其预后的方法之一。

2 BIM基因简介

近10余年来,BIM(Bcl-2 interacting mediator of cell death)作为Bcl-2(B cell leukemia/lymphoma-2 genes)家族的促凋亡基因被广泛深入研究。Bcl-2家族分为抗凋亡和促凋亡成员两部分,其中抗凋亡成员包括Bcl-2、Bcl-XL、Bcl-W、Mcl-1等,促凋亡成员主要包括BIM、PUMA、BAD、BID、BIK、NOXA等,抗凋亡及促凋亡成员通过相互作用发挥调节细胞凋亡的作用[13-14]。其中,促凋亡基因BIM通过表达仅含BH3结构域的蛋白质发挥重要的促凋亡功能,该基因也是目前被证实能在淋巴细胞中被GC诱导表达上调的Bcl-2家族成员[5-8, 14]

3 BIM基因在细胞凋亡过程中的作用

BIM基因的表达直接或者间接在细胞内源性凋亡的过程中发挥重要作用[14]。目前已经证实大量的刺激因素通过BIM介导的内源性凋亡途径引起细胞凋亡,这些刺激包括:细胞因子[15]或生长因子[16]突然撤退、缺乏葡萄糖的供应[17-19]、使用酪氨酸激酶抑制剂[20]、GC[21-23]、热休克蛋白[13, 24]等。Ploner等[25]通过体外实验证实,GC诱导的CCRF-CEM细胞凋亡与BIM基因敲除有关,相关研究也证实BIM基因在GC介导的白血病细胞凋亡过程中发挥关键作用[26-28]。从而说明GC介导的BIM基因表达与正常及恶变的淋巴细胞凋亡有关。

4 BIM基因及其表达产物在GC治疗儿童ALL中的作用 4.1 BIM基因在GC治疗ALL过程中的作用

在研究ALL对GC耐药机制的过程中,Bcl-2家族成员因在GC介导的淋巴细胞凋亡过程中发挥关键的促凋亡功能而被广泛研究[10, 29-31]。Kfir-Erenfeld等[32]研究发现在BIM基因正常的ALL细胞中,GC通过介导BIM基因表达上调诱导淋巴细胞凋亡,而BIM基因敲除的ALL细胞则表现出对GC耐药;在泼尼松治疗1周后,GC敏感的ALL患者体内BIM基因表达明显上调,而GC耐药的患者体内BIM基因表达无明显改变。说明BIM基因缺陷或表达受抑与ALL对GC耐药有关。

体外实验发现在GC耐药的ALL细胞中,GC不能介导促凋亡基因BIM表达上调[22, 30],而在BIM基因敲除的小鼠体内,GC诱导的ALL细胞凋亡被抑制[21-22]。进一步研究发现GC能直接或者间接诱导BIM基因表达,同时抑制抗凋亡因子Mcl-1及Bcl-1的活性,促使ALL细胞凋亡[22, 25],以上研究证实GC通过介导BIM基因表达上调诱导ALL细胞凋亡。

4.2 BIM基因表达介导ALL细胞凋亡的作用机制

目前认为诱导肿瘤细胞凋亡是肿瘤治疗成败的关键因素。研究发现在正常及恶变的淋巴细胞中,BIM表达产物均能在GC介导的细胞凋亡过程中发挥关键促凋亡作用[26, 28]。Jing等[33]通过动物实验发现在BIM基因内含子区域存在GC受体(glucocorticoid receptor, GR)结合位点,GC通过刺激GR特异性结合这一位点促使BIM基因转录增加,介导白血病细胞的凋亡。Zhao等[31]通过体外实验也证实GC通过与GR结合促进BIM基因表达上调,介导ALL细胞凋亡。研究者还发现GR与BIM协同作用抑制抗凋亡基因Bcl-2及Mcl-1的表达[10, 12, 22, 25, 33],从而说明GC诱导白血病细胞凋亡的过程与GR及BIM协同作用有关。

4.3 BIM基因表达在GC治疗ALL过程中的调节

GC在体内通过诱导BIM基因的表达发挥促ALL细胞凋亡作用,然而BIM基因在转录和翻译过程中受多种因素的调节。研究发现,BIM mRNA上有多个miRNA的作用位点,其中miRNA17在转录水平负性调节BIM基因表达[2]。Kfir-Erenfeld等[32]在利用地塞米松诱导淋巴细胞凋亡的过程中发现miRNA-103通过转录和翻译水平促进BIM基因的表达,而miRNA-20a则抑制BIM基因表达。说明BIM基因的表达受多种miRNA共同调节。

GR通过与辅助因子热休克蛋白(heat shock protein, HSP)70和90形成稳定的复合物而存在于细胞质中[8]。既往研究认为HSP90与儿童ALL对GC的耐药性无关[8]。然而Akahane等[24]通过体外实验发现,利用一种高活性的HSP90抑制剂NVP-AUY922处理急性T淋巴细胞白血病(T-ALL)会引起促凋亡蛋白BIM和BAD的表达量增加,同时减少Bcl-2的表达,引起T-ALL细胞的凋亡,从而说明在T-ALL细胞凋亡过程中BIM表达受HSP90负性调节。之所以得出相反的结论,可能与选择的ALL类型、干预措施不同等因素有关。

Heidari等[34]通过对人类白血病细胞进行体外实验,发现转录因子c-jun阴性的白血病细胞能明显减少Bim mRNA的表达和ALL细胞的凋亡,如果恢复c-jun表达则增加GC诱导的BIM基因表达促使ALL细胞凋亡增加,从而说明转录因子c-jun在地塞米松诱导的Bim基因表达过程中发挥重要的调节作用。

5 BIM基因及其表达产物参与的儿童ALL对GC耐药的机制

目前研究认为白血病细胞的基因型、临床特点、治疗方案、对药物的反应等因素与ALL的治疗及预后有关。然而,由于受多种因素的共同影响,儿童ALL对GC耐药的相关机制的研究存在困难。

5.1 白细胞介素7受体信号通路中的分子基因突变

Li等[1]发现在儿童T-ALL中存在JAK1和KRAS基因突变,这2种基因突变与儿童T-ALL对GC耐药及预后较差有关。JAK1和KRAS基因突变导致其编码的白细胞介素7受体(interleukin 7 receptor, IL7R)信号通路中关键因子缺乏,激活其信号通路下游的AKT和MEK-ERK,引起促生存因子Mcl-1和Bcl-XL表达,抑制BIM基因表达,同时ERK促使BIM蛋白磷酸化而丧失促凋亡活性,最终抑制GC诱导的白血病细胞凋亡[1]。说明JAK1和KRAS基因突变导致GC诱导BIM的表达受抑是ALL对GC耐药的原因之一。

5.2 BIM基因异常

Ng等[20]在研究酪氨酸激酶抑制剂耐药的慢性髓细胞白血病时,发现BIM基因内含子2存在长度为2 903 bp的缺失,而这种类型的缺失导致表达的BIM蛋白质缺乏BH3结构域而丧失促凋亡活性。Soh等[35]通过体外实验发现BIM基因内含子缺失与儿童T-ALL对GC耐药有关。Gagné等[5]发现一种BIM基因单核苷酸多态性,C29201T(rs724710)能降低儿童ALL的总体生存率,可能原因是编码的BIM蛋白缺乏BH3结构域导致肿瘤细胞的耐药。说明BIM基因的异常导致其编码的蛋白质结构改变而影响儿童ALL对GC的敏感性。

6 BIM基因在GC耐药ALL治疗中的作用

Soh等[35]研究发现通过联合使用其他细胞毒性药物(甲氨蝶呤、长春新碱、左旋门冬酰胺酶等)可以有效克服BIM基因缺失引起的ALL细胞耐药。Korfi等[36]通过体外实验发现,曲美替尼能引起B-ALL中BIM蛋白的去磷酸化及BIM基因表达上调,从而介导白血病细胞的凋亡。通过联合Bcl-2抑制剂AT101和曲美替尼可以促进BIM表达并抑制Mcl-1的促生存作用,最终介导B-ALL细胞的凋亡[6, 36]。Gu等[37]通过对GC耐药的T-ALL进行体外实验研究发现,联合使用雷帕霉素和地塞米松能通过上调Bax及BIM等表达抑制T-ALL细胞的生长,从而说明雷帕霉素和地塞米松协同抑制T-ALL细胞增殖。上述实验说明通过联合化疗的方式可以增加GC诱导的BIM表达,促进ALL细胞凋亡,提高化疗效果。

研究证实,抑制促生存信号通路同样能增加ALL对GC的敏感性。促生存信号通路PI3K/AKT/mTOR被激活可以抑制BIM基因的表达;相反,通过抑制PI3K/AKT/mTOR信号通路可促进BIM基因表达,从而促进肿瘤细胞的凋亡[38-39]。BEZ235是一种PI3K/AKT/mTOR信号通路抑制剂,可以通过抑制AKT1增加BIM的表达同时抑制Mcl-1的表达,最终引起激素耐药的T-ALL对地塞米松的敏感性增加,提升激素介导的白血病细胞凋亡[7, 27]。Liu等[40]通过体外实验发现小剂量(0.1 μmol/L)的茴香霉素联合地塞米松能够促进GC耐药的T-ALL细胞的凋亡,而这一过程是通过活化激素受体及P38-MAPK/JNK信号通路来实现的。Han等[41]研究发现中药槐杞黄能通过抑制AKT/Foxo1及上调BIM基因表达介导ALL细胞的凋亡。所以,通过抑制促生存信号通路中的关键因子可以有效增加ALL细胞内BIM基因的表达,克服ALL对GC的耐药性,促进ALL细胞凋亡。

既然已经证实BIM基因表达产物作为GC诱导ALL细胞凋亡的重要因子[25-28],而抗凋亡因子Bcl-2及Bcl-XL等能够抑制BIM基因表达[21-22, 25],推测使用促生存因子抑制剂可能使GC诱导的BIM基因表达上调引起ALL细胞凋亡。目前口服的Bcl-2及Bcl-XL抑制剂ABT-263是正在进行临床试验的药物,研究表明其能对多种恶性肿瘤发挥抗肿瘤作用[42]。ABT-263通过抑制细胞内抗凋亡因子Bcl-2、Mcl-1及Bcl-XL表达,上调促凋亡BIM的表达,导致肿瘤细胞凋亡[42]。然而复发性ALL对Bcl-2抑制剂耐药的发生率较高,可能与肿瘤复发的过程中白血病细胞生物特性改变有关[42-43],随着新的Bcl-2抑制剂的研发,复发性ALL耐药的问题可能得到有效解决。目前已进入临床试验阶段的还有高选择性的Bcl-2抑制剂ABT199及能广泛抑制Bcl-2、Bcl-XL、Bcl-W的ABT737[44]。随着对Bcl-2基因家族及BH3类似物的研究不断深入,这类药物将来可能成为ALL治疗的新方法。

7 展望

BIM基因及其表达产物在GC介导的ALL细胞凋亡过程中发挥重要作用,然而BIM基因在体内的表达受多种因素的影响。因此,通过有效措施促进GC诱导的BIM基因表达,从而增加BIM基因表达产物介导的ALL细胞凋亡可能是今后研究及临床治疗GC耐药的儿童ALL的关键措施之一。

参考文献
[1] Li Y, Buijs-Gladdines JG, Canté-Barrett K, et al. IL-7 receptor mutations and steroid resistance in pediatric T cell acute lymphoblastic leukemia: a genome sequencing study[J]. PLoS Med, 2016, 13 (12): e1002200. DOI:10.1371/journal.pmed.1002200
[2] Harada M, Pokrovskaja-Tamm K, Söderhäll S, et al. Involvement of miR17 pathway in glucocorticoid-induced cell death in pediatric acute lymphoblastic leukemia[J]. Leuk Lymphoma, 2012, 53 (10): 2041–2050. DOI:10.3109/10428194.2012.678004
[3] Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia[J]. N Engl J Med, 2006, 354 (2): 166–178. DOI:10.1056/NEJMra052603
[4] Yeoh AE, Tan D, Li CK, et al. Management of adult and paediatric acute lymphoblastic leukaemia in Asia: resource-stratified guidelines from the Asian Oncology Summit 2013[J]. Lancet Oncol, 2013, 14 (12): e508–e523. DOI:10.1016/S1470-2045(13)70452-2
[5] Gagné V, Rousseau J, Labuda M, et al. Bim polymorphisms: influence on function and response to treatment in children with acute lymphoblastic leukemia[J]. Clin Cancer Res, 2013, 19 (18): 5240–5249. DOI:10.1158/1078-0432.CCR-13-1215
[6] Rambal AA, Panaguiton ZL, Kramer L, et al. MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM[J]. Leukemia, 2009, 23 (10): 1744–1754. DOI:10.1038/leu.2009.80
[7] Reynolds C, Roderick JE, LaBelle JL, et al. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia[J]. Leukemia, 2014, 28 (9): 1819–1827. DOI:10.1038/leu.2014.78
[8] Bhadri VA, Trahair TN, Lock RB. Glucocorticoid resistance in paediatric acute lymphoblastic leukaemia[J]. J Paediatr Child Health, 2012, 48 (8): 634–640. DOI:10.1111/jpc.2012.48.issue-8
[9] Hilden JM, Dinndorf PA, Meerbaum SO, et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children's Oncology Group[J]. Blood, 2006, 108 (2): 441–451. DOI:10.1182/blood-2005-07-3011
[10] Jiang N, Koh GS, Lim JY, et al. BIM is a prognostic biomarker for early prednisolone response in pediatric acute lymphoblastic leukemia[J]. Exp Hematol, 2011, 39 (3): 321–329. DOI:10.1016/j.exphem.2010.11.009
[11] Schultz KR, Pullen DJ, Sather HN, et al. Risk-and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG)[J]. Blood, 2007, 109 (3): 926–935.
[12] Horton T. Yin and yang of glucocorticoid receptors in apoptosis[J]. Blood, 2015, 125 (2): 209–211. DOI:10.1182/blood-2014-11-609206
[13] Hata AN, Engelman JA, Faber AC. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics[J]. Cancer Discov, 2015, 5 (5): 475–487. DOI:10.1158/2159-8290.CD-15-0011
[14] Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in health and disease[J]. Oncotarget, 2015, 6 (27): 23058–23134. DOI:10.18632/oncotarget.v6i27
[15] Kovarova M, Koller BH. PGE2 promotes apoptosis induced by cytokine deprivation through EP3 receptor and induces Bim in mouse mast cells[J]. PLoS One, 2014, 9 (7): e102948. DOI:10.1371/journal.pone.0102948
[16] Rohrbeck L, Gong JN, Lee EF, et al. Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM[J]. Cell Death Differ, 2016, 23 (12): 2054–2062. DOI:10.1038/cdd.2016.96
[17] Caro-Maldonado A, Tait SW, Ramirez-Peinado S, et al. Glucose deprivation induces an atypical form of apoptosis mediated by caspase-8 in Bax-, Bak-deficient cells[J]. Cell Death Differ, 2010, 17 (8): 1335–1344. DOI:10.1038/cdd.2010.21
[18] Coloff JL, Macintyre AN, Nichols AG, et al. Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition[J]. Cancer Res, 2011, 71 (15): 5204–5213. DOI:10.1158/0008-5472.CAN-10-4531
[19] Liu T, Kishton RJ, Macintyre AN, et al. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis[J]. Cell Death Dis, 2014, 5 : e1470. DOI:10.1038/cddis.2014.431
[20] Ng KP, Hillmer AM, Chuah CT, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer[J]. Nat Med, 2012, 18 (4): 521–528. DOI:10.1038/nm.2713
[21] Erlacher M, Michalak EM, Kelly PN, et al. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation-and glucocorticoid-induced apoptosis of lymphoid cells in vivo[J]. Blood, 2005, 106 (13): 4131–4138. DOI:10.1182/blood-2005-04-1595
[22] Bachmann PS, Gorman R, Papa RA, et al. Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia[J]. Cancer Res, 2007, 67 (9): 4482–4490. DOI:10.1158/0008-5472.CAN-06-4244
[23] Wang Z, Malone MH, He H, et al. Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis[J]. J Biol Chem, 2003, 278 (26): 23861–23867. DOI:10.1074/jbc.M301843200
[24] Akahane K, Sanda T, Mansour MR, et al. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia[J]. Leukemia, 2016, 30 (1): 219–228. DOI:10.1038/leu.2015.222
[25] Ploner C, Rainer J, Niederegger H, et al. The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia[J]. Leukemia, 2008, 22 (2): 370–377. DOI:10.1038/sj.leu.2405039
[26] Saenz GJ, Hovanessian R, Gisis AD, et al. Glucocorticoid-mediated co-regulation of RCAN1-1, E4BP4 and BIM in human leukemia cells susceptible to apoptosis[J]. Biochem Biophys Res Commun, 2015, 463 (4): 1291–1296. DOI:10.1016/j.bbrc.2015.06.106
[27] Hall CP, Reynolds CP, Kang MH. Modulation of glucocorticoid resistance in pediatric T-cell acute lymphoblastic leukemia by increasing BIM expression with the PI3K/mTOR inhibitor BEZ235[J]. Clin Cancer Res, 2016, 22 (3): 621–632. DOI:10.1158/1078-0432.CCR-15-0114
[28] Prenek L, Boldizsár F, Kugyelka R, et al. The regulation of the mitochondrial apoptotic pathway by glucocorticoid receptor in collaboration with Bcl-2 family proteins in developing T cells[J]. Apoptosis, 2017, 22 (2): 239–253. DOI:10.1007/s10495-016-1320-8
[29] Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy[J]. Nat Rev Mol Cell Biol, 2014, 15 (1): 49–63.
[30] Bachmann PS, Gorman R, Mackenzie KL, et al. Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor[J]. Blood, 2005, 105 (6): 2519–2526. DOI:10.1182/blood-2004-05-2023
[31] Zhao YN, Guo X, Ma ZG, et al. Pro-apoptotic protein BIM in apoptosis of glucocorticoid-sensitive and -resistant acute lymphoblastic leukemia CEM cells[J]. Med Oncol, 2011, 28 (4): 1609–1617. DOI:10.1007/s12032-010-9641-x
[32] Kfir-Erenfeld S, Haggiag N, Biton M, et al. miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis[J]. Oncotarget, 2017, 8 (1): 472–489.
[33] Jing D, Bhadri VA, Beck D, et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells[J]. Blood, 2015, 125 (2): 273–283. DOI:10.1182/blood-2014-05-576470
[34] Heidari N, Miller AV, Hicks MA, et al. Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells[J]. Cell Death Dis, 2012, 3 : e349. DOI:10.1038/cddis.2012.89
[35] Soh SX, Lim JY, Huang JW, et al. Multi-agent chemotherapy overcomes glucocorticoid resistance conferred by a BIM deletion polymorphism in pediatric acute lymphoblastic leukemia[J]. PLoS One, 2014, 9 (8): e103435. DOI:10.1371/journal.pone.0103435
[36] Korfi K, Smith M, Swan J, et al. BIM mediates synergistic killing of B-cell acute lymphoblastic leukemia cells by BCL-2 and MEK inhibitors[J]. Cell Death Dis, 2016, 7 : e2177. DOI:10.1038/cddis.2016.70
[37] Gu L, Zhou C, Liu H, et al. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis[J]. J Exp Clin Cancer Res, 2010, 29 : 150. DOI:10.1186/1756-9966-29-150
[38] Souid S, Najjaa H, Riahi-Chebbi I, et al. Allium roseum L. extract exerts potent suppressive activities on chronic myeloid leukemia K562 cell viability through the inhibition of BCR-ABL, PI3K/Akt, and ERK1/2 pathways and the abrogation of VEGF secretion[J]. Nutr Cancer, 2017, 69 (1): 117–130. DOI:10.1080/01635581.2017.1248295
[39] Pétigny-Lechartier C, Duboc C, Jebahi A, et al. The mTORC1/2 inhibitor AZD8055 strengthens the efficiency of the MEK inhibitor trametinib to reduce the Mcl-1/[Bim and Puma] ratio and to sensitize ovarian carcinoma cells to ABT-737[J]. Mol Cancer Ther, 2017, 16 (1): 102–115. DOI:10.1158/1535-7163.MCT-16-0342
[40] Liu Y, Ge J, Li Q, et al. Low-dose anisomycin sensitizes glucocorticoid-resistant T-acute lymphoblastic leukemia CEM-C1 cells to dexamethasone-induced apoptosis through activation of glucocorticoid receptor and p38-MAPK/JNK[J]. Leuk Lymphoma, 2014, 55 (9): 2179–2188. DOI:10.3109/10428194.2013.866664
[41] Han J, Lin M, Zhou D, et al. Huang Qi Huai granules induce apoptosis in acute lymphoblastic leukemia cells through the Akt/FoxO1 pathway[J]. Cell Physiol Biochem, 2016, 38 (5): 1803–1814. DOI:10.1159/000443119
[42] Alford SE, Kothari A, Loeff FC, et al. BH3 inhibitor sensitivity and Bcl-2 dependence in primary acute lymphoblastic leukemia cells[J]. Cancer Res, 2015, 75 (7): 1366–1375. DOI:10.1158/0008-5472.CAN-14-1849
[43] Del Gaizo Moore V, Schlis KD, Sallan SE, et al. BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia[J]. Blood, 2008, 111 (4): 2300–2309. DOI:10.1182/blood-2007-06-098012
[44] Roy MJ, Vom A, Czabotar PE, et al. Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway[J]. Br J Pharmacol, 2014, 171 (8): 1973–1987. DOI:10.1111/bph.12431