中国当代儿科杂志  2018, Vol. 20 Issue (1): 77-82  DOI: 10.7499/j.issn.1008-8830.2018.01.016

引用本文  

陆富策, 农光民. 程序性死亡因子1在病毒感染性疾病中的作用[J]. 中国当代儿科杂志, 2018, 20(1): 77-82.
LU Fu-Ce, NONG Guang-Min. Role of programmed death-1 in viral infectious diseases[J]. Chinese Journal of Contemporary Pediatrics, 2018, 20(1): 77-82.

基金项目

国家自然科学基金(81460251);广西壮族自治区手足口病防治研究资金(2014249)

作者简介

陆富策, 男, 硕士研究生

文章历史

收稿日期:2017-11-21
接受日期:2017-12-11
程序性死亡因子1在病毒感染性疾病中的作用
陆富策     综述, 农光民     审校    
广西医科大学第一附属医院儿科, 广西 南宁 530021
摘要:目前对于程序性死亡因子1(PD1)在感染性疾病中对免疫调节的作用主要集中在慢性病毒感染相关的研究,而在急性病毒感染中研究较少。在慢性病毒感染中,PD1高表达于CD8+T细胞表面,这是CD8+T细胞耗竭的标志之一。最近研究显示,在慢性病毒感染中,也存在高表达于调节性T细胞表面的PD1,与耗竭CD8+T细胞表面PD1配体1(PD-L1)结合导致对CD8+T细胞免疫产生更强的抑制效应。阻断耗竭CD8+T细胞与调节性T细胞之间的PD1/PD-L1信号通路可以明显逆转耗竭CD8+T细胞功能,并极大改善耗竭CD8+T细胞抗病毒效应。然而,在急性病毒感染中,PD1/PD-L1信号通路的作用并不明确。本文主要概括了关于PD1在感染性疾病中最新的研究,并论述其在急性、慢性病毒感染中的作用。
关键词程序性死亡因子1    病毒感染    调节性T细胞    耗竭CD8+T细胞    
Role of programmed death-1 in viral infectious diseases
LU Fu-Ce , NONG Guang-Min     
Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
Abstract: The research on the immunoregulatory effect of programmed death-1 (PD-1) in infectious diseases mainly focuses on chronic viral infection, but there are few studies on acute viral infection. In chronic viral infection, PD-1 is highly expressed on the surface of CD8+T cells, which is a sign of CD8+T cell depletion. Recent studies have shown that in chronic viral infection, PD-1 is also highly expressed on the surface of regulatory T cells and binds to programmed death-ligand 1 (PD-L1) on the surface of exhausted CD8+T cells, resulting in a stronger inhibitory effect on CD8+T cell immunity. Blocking the PD-1/PD-L1 signaling pathway between exhausted CD8+T cells and regulatory T cells can significantly reverse the depletion of CD8+T cells and greatly improve the antiviral effect of CD8+PD-1/PD-L1 signaling pathway in acute viral infection remains unknown. This article summarizes the latest research on PD-1 in infectious diseases and discusses its role in acute and chronic viral infection.
Keywords: Programmed death-1    Viral infection    Regulatory T cell    Exhausted CD8+ T cell    
1 PD1概述

程序性死亡因子1(programmed cell death 1, PD1)是CD28家族成员,属于I型跨膜蛋白,其胞质区含有2个酪氨酸残基,靠近N端的1个位于免疫受体酪氨酸抑制基序(immunoreceptor tyrosine-based inhibitory motif, ITIM)中,靠近C端的1个位于免疫受体酪氨酸转化基序(immunoreceptor tyrosine-based switch motif, ITSM)中,最早是由Ishida等[1]通过消减杂交技术从处于凋亡状态的小鼠细胞系克隆而获得,因与细胞凋亡相关而得名。PD1主要表达在活化的T淋巴细胞、B淋巴细胞和巨噬细胞表面,静止期T细胞不表达PD1[2]。PD1主要有2个配体:配体1(programmed cell death ligand-1, PD-L1)及配体2(programmed cell death ligand-2, PD-L2),两者在表达上存在差异,PD-L2主要表达于树突状细胞、巨噬细胞、肥大细胞[3-4];而PD-L1则主要表达于B细胞、树突状细胞、巨噬细胞、骨髓衍生的肥大细胞和T细胞上,并随着这些细胞的活化而上调[5-7]。PD-L1与PD1结合后,PD1胞质区ITSM结构域中的酪氨酸发生磷酸化,募集SHP-2磷酸酶,使下游的syk和磷脂酰肌醇3激酶(phosphatidyl inositol-3-kinase, PI3K)发生去磷酸化,从而传递抑制性信号而发挥抑制效应[3]

过去对PD1/PD-L1信号通路在慢性病毒感染中发挥的作用已得到广泛研究,而对其在急性病毒感染中的作用研究较少。目前已证实慢性病毒感染中PD1高表达于CD8+T细胞表面调控CD8+T细胞走向耗竭[8-9],而PD1在急性病毒感染中对CD8+T细胞的作用并不确切。近年来研究发现在慢性病毒感染中调节性T细胞也高表达PD1等抑制性分子,并可能与病毒载量增加或抗病毒T细胞反应的抑制作用增加有关。阻断调节性T细胞与耗竭CD8+T细胞表面PD1/PD-L1信号通路后,更强的逆转耗竭CD8+T细胞的功能,这给慢性病毒感染性疾病治疗的靶向治疗策略带来了新的契机。

2 PD1在慢性病毒感染性疾病中的作用 2.1 PD1参与介导调节CD8+T细胞功能耗竭

T细胞耗竭是指T细胞逐渐失去效应功能的一种细胞状态,是体内病原体免疫逃逸的主要原因之一,主要表现特点为增殖能力低下,γ-干扰素(IFN-γ)、肿瘤坏死因子(TNF)等细胞因子分泌减少或匮乏,细胞毒功能衰竭或缺失。导致T细胞耗竭的主要原因:其一是病原体持续的刺激导致T细胞表面表达多个抑制性受体,其中PD1在众多抑制性受体中发挥关键的作用;其二是包括IL-10等免疫抑制因子的产生。T细胞表面表达抑制性分子是调节T细胞耗竭的内在因素,起主要作用,免疫抑制因子释放为外在因素,起次要作用[10-11]。Barber等[12]通过基因芯片分析比较慢性淋巴细胞性脉络丛脑膜炎病毒(lymphocytic choriomeningitis virus, LCMV)感染的小鼠外周血LCMV特异性耗竭CD8+T细胞与LCMV特异性功能CD8+T细胞基因表型,发现LCMV特异性耗竭CD8+T细胞编码PD1的mRNA水平明显上调;且LCMV特异性耗竭CD8+T细胞分泌IFN-γ等细胞因子减少,阻断PD1/PD-L1途径可以使耗竭CD8+T细胞分泌IFN-γ等细胞因子能力恢复,并提高感染小鼠对体内病毒控制能力。由此,PD1高表达于耗竭CD8+T细胞表面并抑制CD8+T细胞功能第一次得到证实。这一发现促使了人们进一步研究,并证实PD1/PD-L1途径不仅在慢性病毒感染的小鼠T细胞免疫应答中起着重要的作用,还参与了灵长类动物及人类慢性病包括HIV、HBV、HCV等病毒感染的T细胞免疫应答的调节[13-17]。Zhang等[16]研究63名处于疾病进展期与非进展期HIV患者,分别检测两组患者外周血CD8+T细胞表面PD1表达情况,结果显示进展期患者CD8+T细胞表面表达PD1明显高于非进展期患者;同时检测患者PD1+CD8+T细胞表面活化标记物CD38,CD8+T细胞毒功能标志物颗粒霉和穿孔素,以及细胞因子IFN-γ,发现尽管进展期患者PD1+CD8+T细胞表面表达的活化因子CD38高于非进展期患者,但颗粒霉、穿孔素及IFN-γ明显低于非进展期患者;提示尽管进展期患者PD1高表达的CD8+T细胞高度活化,但细胞功能明显受损;此外,体外阻断PD1/PD-L1途径PD1+CD8+T细胞分泌IFN-γ的量明显增加。与Day等[18]人研究观点类似,该研究进一步证实了PD1表达上调诱导CD8+T细胞功能耗竭,并与疾病进展密切相关。慢性病毒感染疾病期间,PD1高表达是耗竭CD8+T细胞的表面标志之一,耗竭CD8+T细胞的功能衰竭程度与CD8+T细胞表面表达PD1水平与密度有着直接关系[18-20]。PD1与其配体PD-L1结合抑制TCR信号,导致T细胞免疫功能受限[21-23],阻断PD1/PD-L1信号通路可以有效的恢复细胞毒功能和增殖功能[18, 24-25]

2.2 调节性T细胞与CD8+T细胞之间PD1/PD-L1信号通路抑制CD8+T细胞免疫应答

PD1不仅表达于CD8+T细胞表面介导T细胞耗竭,还同样表达于调节性T细胞表面并参与CD8+T细胞耗竭功能障碍的调控[8, 26-27]。近年来相当一部分研究主要集中在抑制性受体过度表达于调节性T细胞对耗竭T细胞的功能调节作用[28-31]

调节性T细胞与CD8+T细胞之间PD1/PD-L1信号通路对CD8+T细胞功能有强的免疫抑制效应。在慢性LCMV感染模型中[32],从PD-L1-/-或PD1-/-的幼鼠中分离调节性T细胞分别与PD1-/-或PD-L1-/-的幼鼠分离的CD8+T细胞共培养;当PD1-/-调节性T细胞与PD-L1-/-CD8+T细胞共培养时,对CD8+T细胞产生的免疫抑制效应高于PD-L1-/-调节T细胞与PD1-/-CD8+T细胞共同培养时的,这说明PD1高表达于调节性T细胞,且与CD8+T细胞表面PD1配体PD-L1结合后抑制免疫应答效应比PD1直接高表达于CD8+T细胞表面所产生的免疫抑制效应更强。

调节性T细胞与CD8+T细胞之间PD1/PD-L1信号通路是CD8+T细胞免疫应答受限,清除病原体能力降低的关键。Jin等[10]认为调节性T细胞表面表达抑制性分子对促进慢性病毒感染性疾病、肿瘤疾病发生发展的可能机制之一是调节性T细胞与效应T细胞或者耗竭T细胞之间抑制性分子与其相关配体结合从而改变T细胞活化通路,从而削弱抗原特异性T细胞的增殖能力和免疫应答功能,从而加速了疾病的发生发展。在LCMV感染的小鼠中,实施对调节性T细胞消融的干预措施同样可以使LCMV特异性CD8+T细胞数量增加10~100倍,同时的产生大量的IFN-γ,TNF-α等细胞因子,但对机体清除病原体的能力无明显改变[33]。进一步研究发现,当调节性T细胞消融后,可以观察到抗原特异性CD11b+和CD8a+树突状细胞表面PD-L1表达增加。阻断PD1/PD-L1信号通路后,机体清除病原体能力明显改善。该研究认为,调节性T细胞消融可以使耗竭的CD8+T细胞功能恢复,但阻断PD1/PD-L1信号通路是功能恢复后的CD8+T细胞发挥抗病毒效应的关键。调节性T细胞减少后引起病原特异性CD8a+树突状细胞表面表达PD-L1水平上调, 与功能恢复的耗竭CD8+T细胞表面高表达的PD1结合,抑制了效应T细胞对靶细胞毒效应,阻断PD1/PD-L1信号通路可以使CD8+T细胞清除机体病毒的能力增加[33]。随后Akhmetzyanova等[34]研究也证实了类似的观点,逆转录病毒感染细胞高水平表达的PD-L1会导致T细胞杀伤的免疫逃逸。PD-L1诱导调节性T细胞的产生,维持并强化其负性调节功能,抑制效应性T细胞的活性,阻断PD1/PD-L1途径可以抑制幼稚T细胞向调节性T细胞分化[35-36]。这表明靶细胞的PD-L1表达水平可以最终决定机体对靶细胞的清除程度。产生如此效果的具体机制有待进一步研究,但仍然带给了我们免疫治疗启示:阻断调节性T细胞与CD8+T细胞之间PD1/PD-L1信号通路,可以逆转慢性病毒感染中耗竭CD8+T细胞功能,有效的控制慢性病毒感染[32, 37-39]

3 PD1在急性病毒感染性疾病中的作用

如先前所述,PD1/PD-L1信号通路在慢性病毒感染中调控T细胞耗竭/功能障碍,但在急性病毒感染期间,对T细胞调节作用仍需进一步研究。

近年来,PD1/PD-L1信号通路在狂犬病、流感、脓毒症等多种急性病毒感染性疾病中对CD8+T细胞功能发挥着负性调节作用得到证实[40-43]。小鼠体内狂犬病毒感染期间,PD-L1在神经细胞上的表达加速了浸润于中枢神经系统的CD8+T细胞的凋亡,从而抑制了T细胞的免疫应答;而高致病性流感病毒感染小鼠后,小鼠体内病毒清除延迟及死亡率增加与CD8+T细胞表面表达PD1增加有关。在Zelinskyy等[44]研究中,逆转录病毒感染的小鼠CD8+T细胞虽然在细胞表面高表达PD1,仍具有较强的细胞功能,分泌的IFN-γ等细胞因子量未见明显改变。而通过直接比较PD1loCD8+T细胞群与PD1hiCD8+T细胞群表达释放IFN-γ的量发现,PD1hiCD8+T细胞群产生IFN-γ的量稍低于PD1loCD8+T细胞群。显然,尽管此时CD8+T细胞并未表现有功能障碍的改变,但表达的PD1对CD8+T细胞可能已经存在一个潜在的抑制作用了。这在Erickson等[45]的人偏肺病毒(Human metapneumovirus, HMPV)感染小鼠的研究中得到进一步验证,HMPV感染小鼠CD8+T细胞表面PD1表达上调,并表现出功能障碍。此外,PD1基因缺乏CD8+T细胞较野生型CD8+T细胞分泌更多的IFN-γ,表现出对HMPV更强的免疫应答能力。这些研究证据进一步证明PD1/PD-L1信号通路在某些急性病毒感染性疾病中对CD8+T细胞免疫调节发挥负性调控作用。

然而,最近的研究显示,急性病毒感染期间PD1/PD-L1信号通路对T细胞调控作用更为复杂。Odorizzi等[46]研究中将同等数量的野生型(WT),PD1基因敲除(KO)P14细胞(LCMV特异性TCR转基因-CD8+T细胞)分别接种到性状相似的不同野生型小鼠中,随后感染LCMV病毒株,感染后第8天,PD1基因敲除的P14细胞数明显多于野生型P14细胞,提示PD1缺乏促进了P14细胞的增殖;然而,有趣的是,PD1基因敲除的P14细胞表达的IFN-γ(37%)、TNF(1.5%),要低于野生型P14细胞表达的IFN-γ(47%),TNF(6%),且表现出更大的凋亡率。这与上述研究急性期感染期间PD1对CD8+T细胞存在着负性调节作用存在一定的矛盾。进一步研究发现,在PD1基因敲除的P14细胞表面过表达LAG-3、Tim-3、2B4等多种抑制性分子。而这是否是PD1缺乏表现出更大的CD8+T细胞功能障碍、促进P14细胞凋亡的原因仍有待证实。然而,目前尚无其他研究证据证明PD1缺乏导致LAG-3、Tim-3、2B4等多种抑制性分子的过表达,所以在该研究中,PD1在急性病毒感染期间对P14细胞确切作用需进一步研究。

Odorizzi等[46]研究提示在感染早期,T细胞免疫应答功能障碍可能与PD1缺乏有关,PD1并非是导致T细胞耗竭所必须的,相反PD1基因的缺失会导致更多终末分化耗竭T细胞的累积,导致更严重的T细胞耗竭和功能障碍。Prasad等[47]研究显示,PD1/PD-L1信号通路的存在是有益于记忆T细胞的形成,与野生型小鼠相比,PD1基因敲除的小鼠在感染鼠巨细胞病毒(murine cytomegalovirus, MCMV)后,活化CD8+T细胞及收缩阶段形成的记忆T细胞数量明显减少。急性病毒感染后产生的记忆性CD8+T细胞具有高度的功能性,是保护性免疫的重要组成部分。这说明PD1可以通过在T细胞分化过程中促进活化CD8+T细胞及记忆T细胞的形成,减少耗竭T细胞的累积,从而有益于机体对急性病毒感染性疾病的病原体清除。

有研究发现在正常成人体内,PD1会高表达于效应CD8+T细胞而非耗竭CD8+T细胞[48]。Legat等[2]通过诱导CD8+T细胞活化,同样证实活化及效应CD8+T细胞表面PD1表达上调,且上调程度与细胞活化程度呈正相关性。在研究中很重要的一点是,PD1阳性的CD8+T细胞亚群产生的IFN-γ及TNF明显高于PD1阴性的CD8+T细胞亚群,也就是说,PD1在此条件下并不是T细胞耗竭的标志,与细胞功能障碍无关[2]。类似的,Hong等[49]研究也发现,恒河猴SIV感染后,PD1+CD8+T细胞数量在急性感染期达到峰值水平,并在随后慢性感染的持续过程中降至低值。这些都提示PD1在急性感染期,并非是T细胞耗竭的标志。急性感染期PD1高表达于CD8+T细胞表面,可能提示该时期是处于T细胞增殖活化或分化期,是对外界抗原刺激免疫应答的最好时期。因此,PD1高表达于CD8+T细胞表面在该期是否对疾病的控制发挥着正向的免疫调节作用,或者只是促使分化或激活的T细胞凋亡,从而限制活化T细胞在健康或疾病状态的过度免疫反应[49-51],目前尚不清楚,还需要进一步研究。

4 总结与展望

综上所述,随着研究的深入,发现PD1在急、慢性病毒感染中可能有着不同的作用。在慢性病毒感染中,PD1持续高表达于CD8+T细胞或调节性T细胞表面调控CD8+T细胞耗竭/功能障碍;在急性病毒感染中,免疫宿主多数能快速有效清除病原体并产生持久的T细胞记忆,极少造成T细胞耗竭,但在部分感染中,PD1高表达同样会抑制CD8+T细胞功能,削弱CD8+T细胞免疫应答能力。此外,一些研究证据同样表明,急性病毒感染期间,PD1高表达于CD8+T细胞表面可能对T细胞调节有积极调节效应, 尤其在促进记忆性T细胞形成等。虽然PD1高表达于CD8+T细胞表面对CD8+T细胞的作用机制需进一步研究,但明确PD1/PD-L1信号通路在感染性疾病中不同时期的作用,并通过选择恰当时期阻断PD1/PD-L1信号通路来治疗感染性疾病的策略是值得令人期待的。

参考文献
[1]
Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death[J]. EMBO J, 1992, 11(11): 3887-3895. (0)
[2]
Legat A, Speiser DE, Pircher H, et al. Inhibitory receptor expression depends more dominantly on differentiation and activation than "exhaustion" of human CD8 T cells[J]. Front Immunol, 2013, 4: 455. (0)
[3]
Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 pathway from discovery to clinical implementation[J]. Front Immunol, 2016, 7: 550. (0)
[4]
Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome[J]. J Clin Oncol, 2016, 34(23): 2690-2697. DOI:10.1200/JCO.2016.66.4482 (0)
[5]
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677-704. DOI:10.1146/annurev.immunol.26.021607.090331 (0)
[6]
Okazaki T, Honjo T. PD-1 and PD-1 ligands:from discovery to clinical application[J]. Int Immunol, 2007, 19(7): 813-824. DOI:10.1093/intimm/dxm057 (0)
[7]
Drabczyk-Pluta M, Werner T, Hoffmann D, et al. Granulocytic myeloid-derived suppressor cells suppress virus-specific CD8+ T cell responses during acute friend retrovirus infection[J]. Retrovirology, 2017, 14(1): 42. DOI:10.1186/s12977-017-0364-3 (0)
[8]
Speiser DE, Utzschneider DT, Oberle SG, et al. T cell differentiation in chronic infection and cancer:functional adaptation or exhaustion?[J]. Nat Rev Immunol, 2014, 14(11): 768-774. DOI:10.1038/nri3740 (0)
[9]
Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases[J]. Nat Rev Immunol, 2017. (0)
[10]
Jin HT, Jeong YH, Park HJ, et al. Mechanism of T cell exhaustion in a chronic environment[J]. BMB Rep, 2011, 44(4): 217-231. DOI:10.5483/BMBRep.2011.44.4.217 (0)
[11]
See JX, Chandramathi S, Abdulla MA, et al. Persistent infection due to a small-colony variant of Burkholderia pseudomallei leads to PD-1 upregulation on circulating immune cells and mononuclear infiltration in viscera of experimental BALB/c mice[J]. PLoS Negl Trop Dis, 2017, 11(8): e0005702. DOI:10.1371/journal.pntd.0005702 (0)
[12]
Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection[J]. Nature, 2006, 439(7077): 682-687. DOI:10.1038/nature04444 (0)
[13]
Liu Z, Li S, Liu Y, et al. PD1 is highly expressed in diffuse large B-cell lymphoma with hepatitis B virus infection[J]. PLoS One, 2017, 12(6): e0180390. DOI:10.1371/journal.pone.0180390 (0)
[14]
Zhang G, Li N, Zhang P, et al. PD-1 mRNA expression is associated with clinical and viral profile and PD13'-untranslated region polymorphism in patients with chronic HBV infection[J]. Immunol Lett, 2014, 162(1 Pt A): 212-216. (0)
[15]
Barrett L, Trehanpati N, Poonia S, et al. Hepatic compartmentalization of exhausted and regulatory cells in HIV/HCV-coinfected patients[J]. J Viral Hepat, 2015, 22(3): 281-288. DOI:10.1111/jvh.2015.22.issue-3 (0)
[16]
Zhang JY, Zhang Z, Wang X, et al. PD-1 up-regulation is correlated with HIV-specific memory CD8+ T-cell exhaustion in typical progressors but not in long-term nonprogressors[J]. Blood, 2007, 109(11): 4671-4678. DOI:10.1182/blood-2006-09-044826 (0)
[17]
Larsson M, Shankar EM, Che KF, et al. Molecular signatures of T-cell inhibition in HIV-1 infection[J]. Retrovirology, 2013, 10: 31. DOI:10.1186/1742-4690-10-31 (0)
[18]
Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression[J]. Nature, 2006, 443(7109): 350-354. DOI:10.1038/nature05115 (0)
[19]
Virgin HW, Wherry EJ, Ahmed R. Redefining chronic viral infection[J]. Cell, 2009, 138(1): 30-50. DOI:10.1016/j.cell.2009.06.036 (0)
[20]
Sen DR, Kaminski J, Barnitz RA, et al. The epigenetic landscape of T cell exhaustion[J]. Science, 2016, 354(6316): 1165-1169. DOI:10.1126/science.aae0491 (0)
[21]
Wherry EJ. T cell exhaustion[J]. Nat Immunol, 2011, 12(6): 492-499. (0)
[22]
Ren J, Liu X, Fang C, et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition[J]. Clin Cancer Res, 2017, 23(9): 2255-2266. DOI:10.1158/1078-0432.CCR-16-1300 (0)
[23]
Arasanz H, Gato-Cañas M, Zuazo M, et al. PD1 signal transduction pathways in T cells[J]. Oncotarget, 2017, 8(31): 51936-51945. (0)
[24]
Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma[J]. N Engl J Med, 2015, 373(19): 1803-1813. DOI:10.1056/NEJMoa1510665 (0)
[25]
Fuller MJ, Callendret B, Zhu B, et al. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1(PD-1)[J]. Proc Natl Acad Sci U S A, 2013, 110(37): 15001-15006. DOI:10.1073/pnas.1312772110 (0)
[26]
Tang L, Bai J, Chung CS, et al. Programmed cell death receptor ligand 1 modulates the regulatory T cells' capacity to repress shock/sepsis-induced indirect acute lung injury by recruiting phosphatase SRC homology region 2 domain-containing phosphatase 1[J]. Shock, 2015, 43(1): 47-54. DOI:10.1097/SHK.0000000000000247 (0)
[27]
Punkosdy GA, Blain M, Glass DD, et al. Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens[J]. Proc Natl Acad Sci U S A, 2011, 108(9): 3677-3682. DOI:10.1073/pnas.1100213108 (0)
[28]
Bruneau J, Canioni D, Renand A, et al. Regulatory T-cell depletion in angioimmunoblastic T-cell lymphoma[J]. Am J Pathol, 2010, 177(2): 570-574. DOI:10.2353/ajpath.2010.100150 (0)
[29]
Cochain C, Chaudhari SM, Koch M, et al. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice[J]. PLoS One, 2014, 9(4): e93280. DOI:10.1371/journal.pone.0093280 (0)
[30]
Tripathi S, Guleria I. Role of PD1/PDL1 pathway, and TH17 and treg cells in maternal tolerance to the fetus[J]. Biomed J, 2015, 38(1): 25-31. DOI:10.4103/2319-4170.143511 (0)
[31]
Chowdhury A, Del Rio Estrada PM, Tharp GK, et al. Decreased T follicular regulatory cell/T follicular helper cell (TFH) in simian immunodeficiency virus-infected rhesus macaques may contribute to accumulation of TFH in chronic infection[J]. J Immunol, 2015, 195(7): 3237-3247. DOI:10.4049/jimmunol.1402701 (0)
[32]
Park HJ, Park JS, Jeong YH, et al. PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+ T cells[J]. J Immunol, 2015, 194(12): 5801-5811. DOI:10.4049/jimmunol.1401936 (0)
[33]
Penaloza-MacMaster P, Kamphorst AO, Wieland A, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection[J]. J Exp Med, 2014, 211(9): 1905-1918. DOI:10.1084/jem.20132577 (0)
[34]
Akhmetzyanova I, Drabczyk M, Neff CP, et al. PD-L1 expression on retrovirus-infected cells mediates immune escape from CD8+ T cell killing[J]. PLoS Pathog, 2015, 11(10): e1005224. DOI:10.1371/journal.ppat.1005224 (0)
[35]
Park HJ, Kusnadi A, Lee EJ, et al. Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors[J]. Cell Immunol, 2012, 278(1-2): 76-83. DOI:10.1016/j.cellimm.2012.07.001 (0)
[36]
Dyck L, Wilk MM, Raverdeau M, et al. Anti-PD-1 inhibits Foxp3+ Treg cell conversion and unleashes intratumoural effector T cells thereby enhancing the efficacy of a cancer vaccine in a mouse model[J]. Cancer Immunol Immunother, 2016, 65(12): 1491-1498. DOI:10.1007/s00262-016-1906-6 (0)
[37]
Rao M, Valentini D, Dodoo E, et al. Anti-PD-1/PD-L1 therapy for infectious diseases:learning from the cancer paradigm[J]. Int J Infect Dis, 2017, 56: 221-228. DOI:10.1016/j.ijid.2017.01.028 (0)
[38]
Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases[J]. Eur J Immunol, 2017, 47(5): 765-779. DOI:10.1002/eji.201646875 (0)
[39]
Pauken KE, Sammons MA, Odorizzi PM, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade[J]. Science, 2016, 354(6316): 1160-1165. DOI:10.1126/science.aaf2807 (0)
[40]
Liu Q, Li CS. Programmed cell death-1/programmed death-ligand 1 pathway:a new target for sepsis[J]. Chin Med J (Engl), 2017, 130(8): 986-992. DOI:10.4103/0366-6999.204113 (0)
[41]
Lafon M, Mégret F, Meuth SG, et al. Detrimental contribution of the immuno-inhibitor B7-H1 to rabies virus encephalitis[J]. J Immunol, 2008, 180(11): 7506-7515. DOI:10.4049/jimmunol.180.11.7506 (0)
[42]
Yue F, Zhu YP, Zhang YF, et al. Up-regulated expression of PD-1 and its ligands during acute classical swine fever virus infection in swine[J]. Res Vet Sci, 2014, 97(2): 251-256. DOI:10.1016/j.rvsc.2014.07.023 (0)
[43]
Rutigliano JA, Sharma S, Morris MY, et al. Highly pathological influenza A virus infection is associated with augmented expression of PD-1 by functionally compromised virus-specific CD8+ T cells[J]. J Virol, 2014, 88(3): 1636-1651. DOI:10.1128/JVI.02851-13 (0)
[44]
Zelinskyy G, Myers L, Dietze KK, et al. Virus-specific CD8+ T cells upregulate programmed death-1 expression during acute friend retrovirus infection but are highly cytotoxic and control virus replication[J]. J Immunol, 2011, 187(7): 3730-3737. DOI:10.4049/jimmunol.1101612 (0)
[45]
Erickson JJ, Gilchuk P, Hastings AK, et al. Viral acute lower respiratory infections impair CD8+ T cells through PD-1[J]. J Clin Invest, 2012, 122(8): 2967-2982. DOI:10.1172/JCI62860 (0)
[46]
Odorizzi PM, Pauken KE, Paley MA, et al. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells[J]. J Exp Med, 2015, 212(7): 1125-1137. DOI:10.1084/jem.20142237 (0)
[47]
Prasad S, Hu S, Sheng WS, et al. The PD-1:PD-L1 pathway promotes development of brain-resident memory T cells following acute viral encephalitis[J]. J Neuroinflammation, 2017, 14(1): 82. DOI:10.1186/s12974-017-0860-3 (0)
[48]
Duraiswamy J, Ibegbu CC, Masopust D, et al. Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults[J]. J Immunol, 2011, 186(7): 4200-4212. DOI:10.4049/jimmunol.1001783 (0)
[49]
Hong JJ, Amancha PK, Rogers K, et al. Re-evaluation of PD-1 expression by T cells as a marker for immune exhaustion during SIV infection[J]. PLoS One, 2013, 8(3): e60186. DOI:10.1371/journal.pone.0060186 (0)
[50]
Le Burel S, Champiat S, Routier E, et al. Onset of connective tissue disease following anti-PD1/PD-L1 cancer immunotherapy[J]. Ann Rheum Dis, 2017. (0)
[51]
Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway[J]. Nat Rev Immunol, 2017. (0)