孤独症谱系障碍(autism spectrum disorder, ASD)是一组起病于儿童早期、以社会交往交流障碍、重复刻板行为和狭窄兴趣为主要特点的神经系统发育障碍性疾病。近几十年来,其发病率有逐年增高趋势,美国孤独症和发育残疾监控网(Autism and Developmental Disabilities Monitoring, ADDM)最新发布的数据表明,2010年美国ASD的患病率为14.7/1 000,相当于68例儿童中即有1例ASD患儿[1]。尽管患病率高,但ASD的病理生理学机制仍不完全清楚,目前普遍认为ASD是由遗传和非遗传风险引起的多因素复杂疾病。有关ASD发病机制的研究主要包括炎症假说、自身免疫假说、氧化应激假说、神经递质假说等,其中对ASD患儿神经递质异常的研究主要集中于谷氨酸(glutamic acid, Glu)、γ-氨基丁酸(γ-aminobutyric acid, GABA)、多巴胺、5-羟色胺和催产素。神经递质是在突触传递中担当信使的重要化学物质,其类型、分布和含量的不同会对人类的思维、情感和行为产生影响。兴奋性神经递质和抑制性神经递质之间的平衡关系对脑功能的正常发挥起重要作用,兴奋性与抑制性神经递质失衡可能会导致多种神经、精神疾病的发生[2-3]。早在2001年,Hussman[4]就提出了ASD的神经递质失衡学说,其研究发现兴奋性Glu能神经递质和抑制性GABA能神经递质系统的失衡与ASD发病密切相关。随后其研究组进行了一系列相关研究,均提示GABA与ASD的发病密切相关,且GABA可能会成为ASD治疗的新靶点[5-7]。本文主要将GABA在ASD发病机制中的相关研究进展进行综述,以进一步探讨ASD的发病机制,为ASD的治疗提供理论依据。
1 GABA在神经发育过程中的重要作用GABA是一种氨基在γ-C上的非蛋白质组成的天然氨基酸,是成年哺乳动物中枢神经系统重要的抑制性神经递质,通过与三种特异性受体GABAA、GABAB、GABAC相互作用而产生抑制神经元活性的作用[8]。
GABAA是GABA门控的氯离子通道,是由镶嵌在神经细胞膜双脂层中的5个亚基聚合而成的异质寡聚体跨膜糖蛋白,其中心是氯离子通道。该受体的五个亚基分别含有不同药物的结合位点,包括GABA、苯二氮卓、巴比妥盐、神经甾体、乙醇等。GABA与GABAA受体结合后,导致细胞膜上氯离子通道开启,氯离子就顺浓度差进入胞内,胞内膜电位增加而产生超极化,从而抑制神经元的兴奋。然而,该信号通路并非始终介导抑制性作用,在未成熟神经元内,由于向细胞内转运Cl-的Na+-K+-2Cl-共转运体1(Na+-K+-2Cl--co-transporter 1,NKCC1)在早期表达,而向细胞外转运氯离子的K+-2Cl-共转运体2(K+-2Cl--co-transporter 2, KCC2)在后期才发挥作用,从而引起Cl-在未成熟神经元内堆积,Cl-顺浓度差外流而导致GABA起兴奋性作用。多种脑损伤、癫癎发作、神经系统发育异常也可能会导致Cl-调节改变,从而使GABA的抑制性作用转变为兴奋性作用。随着神经元的发育成熟,KCC2表达增多,其功能也逐渐完善,GABA发挥抑制性功能,以维持兴奋-抑制神经环路平衡。研究表明,GABA这种极性转化过程的异常,被认为是ASD发病的重要环节[9-12]。GABAC受体是一个比GABAA受体简单的五聚体复合物,中心是氯离子通道,因此将其归为具有独特药理学性质的GABAA受体亚型,主要在脊椎动物视网膜中富集。
GABAB受体是与G蛋白偶联的跨膜蛋白,与Ca2+和K+通道有关。突触前膜GABAB受体可作为自身受体及异源受体关闭Ca2+通道而减少GABA及Glu的释放,从而对神经元产生解除抑制及抑制两种相反的效应。突触后膜GABAB被激活后引起K+通道开放,K+外流使神经元发生超极化反应,从而对神经元产生抑制效应。GABAB受体能够选择性被巴氯氛激活。
2 GABA信号通路与ASD的关系无论是对ASD患者还是动物模型的研究,都证明GABA信号通路与ASD密切相关。
2.1 多种ASD动物模型的GABA信号通路水平异常多种ASD动物模型与GABA信号通路相关。丙戊酸(valproic acid, VPA)为去乙酰酶抑制剂,宫内暴露可增高大鼠后代出现ASD症状的风险,这与突触前和突触后GABA信号水平下降,导致神经元兴奋与抑制功能失衡密切相关[13]。研究人员进一步观察VPA诱导的ASD动物模型从胚胎期到出生后的一系列变化,证实ASD模型鼠海马神经元内细胞Cl-水平升高,兴奋性GABA递质增多,加强了Glu能神经系统的活动功能[14]。母体免疫动物模型目前已广泛应用于ASD的研究中,孕期大鼠在神经发育的窗口期注射Poly I : C能够诱导其后代产生ASD症状[8],而最新研究表明,该时期注射Poly I : C会导致NKCC1和KCC2表达不平衡,进而导致GABA极性转换延迟[15]。脆性X综合征是由于FMR1基因的5'-非翻译区中三核苷酸重复扩增使FMR1表观遗传沉默,导致其蛋白质产物FMRP丢失,90%以上的脆性X综合征患者表现出一定程度的孤独症相关行为[16-19]。对FMR1基因敲除小鼠模型进行研究,结果表明GABA信号通路参与了脆性X综合征的发病机制[20],而GABAB受体激动剂急性治疗能够纠正包括社交行为缺陷在内的几种脆性X综合征表型[21]。RETT综合征是一种由于X连锁Mecp2基因突变导致的以孤独症、运动异常、癫癎发作等为特点的精神神经障碍综合征。在MeCP2缺陷小鼠模型中,GABA能神经元Glu脱羧酶1/2表达减少且GABA含量减少[22]。此外,一小部分ASD患儿中发现了一些单基因的突变,例如Neuroligin3基因[23-24]和En2基因[25],二者敲除小鼠均能表现出孤独症样行为,而这些基因的作用机制均与GABA信号改变相关。
2.2 ASD患者体内GABA信号水平变化对ASD患者的研究表明,ASD患者血清、脑脊液及脑内的GABA信号通路水平均有改变。
2.2.1 ASD患者血清GABA水平异常虽然GABA不能透过血脑屏障,但由于Glu和GABA能够相互转化,而Glu能够透过血脑屏障,因此血清GABA能够一定程度的反映脑内GABA信号通路水平,提示脑内GABA受体的功能和水平的变化。El-Ansary等[26]对20个3~5岁ASD患儿及正常对照儿童血清GABA、Glu、GABA/Glu进行研究,发现ASD患儿血清GABA、Glu及GABA/Glu明显增高,提示了脑内Glu和GABA传递的功能状态存在改变。
2.2.2 ASD患者脑组织中GABA信号水平及功能异常研究人员通过尸检、发射断层扫描(emission computed tomography, ECT)及磁共振波普(magnetic resonance spectroscopy, MRS)等技术对ASD患者进行研究,结果均提示ASD患者脑内GABA信号水平异常。ASD患者的尸检结果表明,ASD患者脑内GABA受体水平改变:扣带回皮层是参与社交和交流的重要区域,该区域的GABAA受体[27]及其与苯二氮卓结合位点的密度显著降低,同时该区域GABAB受体[28]显著减少;海马中[(3)H]蝇蕈醇标记的GABAA受体和[(3)H]氟硝西泮标记的苯二氮卓结合位点减少[29];小脑内GABA能浦肯野细胞数显著减少[30],GABAA和GABAB受体的表达水平明显降低[31];额中回GABAAα1蛋白显著降低[32]。研究人员进一步使用ECT技术对ASD患者活体脑组织GABAA受体进行研究。用选择性GABAA苯二氮卓类配体123I-iomazenil对ASD患者进行SPECT检查,结果发现伴智力低下和局灶性癫癎局灶性放电的ASD患者较未伴此类症状的ASD患者上层和中层额叶皮质中GABAA表达减少[33];Rett综合征女性脑内GABAA受体密度降低[21]。另外,在使用[(11)C] Ro15-4513为受体显像剂的PET检查中检测到成年男性ASD患者整个大脑中GABAA受体α5亚型的表达水平与健康对照志愿者相比明显减少[34]。应用MRS对ASD患者脑代谢进行研究,结果提示皮质纹状体电路中的Glu/GABA异常可能是ASD的关键病理机制[35],GABA与女性ASD患者社交障碍程度呈显著正相关[36];ASD患者以肌酸(creatine, Cr)为标准参照物的GABA比率与正常对照组相比改变明显[37-38]:额叶GABA/Cr水平降低[39],左侧大脑外侧裂的听觉区域GABA/Cr水平降低[40];ASD患者脑内GABA/Cr水平降低且与ASD症状严重程度相关[41-42],与触觉表现异常相关[43]。联合应用脑磁图(magnetoencephalography, MEG)和MRS对正常发育和ASD的儿童/青少年的听觉区域进行研究,结果表明ASD儿童/青少年GABA/Cr水平显著降低[44-45]。此外,RETT患者脑脊液中KCC2和KCC2/NKCC1水平较正常人明显降低[46]。
2.3 调节GABA信号通路能够改善ASD症状一系列围绕GABA信号通路设计的治疗ASD的药物临床和动物实验已经实施,并提示GABA是ASD治疗的有效靶点。Cohen[47]使用GABA转氨酶激动剂丙咪嗪治疗婴幼儿ASD,观察到患儿血清GABA水平降低近三分之一,言语能力显著改善,重复刻板行为显著减少。布美他尼作为NKCC1离子通道抑制剂,能通过抑制氯离子的内流使未成熟或受损脑内起兴奋作用的GABA恢复为抑制性作用,从而可以用于ASD的治疗。Lemonnier等[48]给予5例ASD患儿口服布美他尼治疗3个月后,患儿的社交语言能力较前改善。Du等[49]的前瞻性研究发现,口服布美他尼联合康复训练组较单纯康复训练组ASD患儿核心症状改善明显。同时,布美他尼可改善VPA诱导的ASD大鼠模型的认知能力及社交行为[50]。美国食品和药物管理局批准的用于维持成年人禁酒的戒毒药物阿坎酸是一种具有潜在多效性影响Glu和GABA神经传递的药物。在动物研究中,阿坎酸作为NMDA Glu受体的拮抗剂,表现出GABAA激动作用[51]。对3例脆性X综合征伴ASD症状患者用阿坎酸治疗,结果显示3名患者的语言交流及社交均得到改善[52]。在一项为期8周的开放性研究表明,选择性GABAB受体激动剂Arbaclofen能够改善ASD儿童和青少年的易怒、社交等症状[53];而动物研究表明GABAB受体激动剂R-baclofen能够改善ASD小鼠模型的社交行为并减少刻板行为[54]。催产素不仅在生产过程中能调节GABA的极性转化[55-56],其受体通路激活还能够引起GABA的释放,因此,外源性催产素对ASD患者情绪、社交、抗压能力的改善很有可能是通过激活催产素受体、促进GABA释放实现的[57]。低剂量的苯二氮卓类药物通过突触后GABAA受体的正向变构调节增加抑制性神经传递,改善ASD动物模型中受损的社交和认知能力,减少重复刻板行为[58]。此外,有报道维生素D[59]、维生素B6[60]能够改善ASD患者症状,二者均能调节GABA水平,因此,虽然作用机制尚不明确,但有可能与调节GABA信号通路有关。
2.4 ASD患者GABA相关基因异常来自ASD Simons Simplex Collection数据库的2 517个家族的外显子组数据显示,影响ASD患者CpG位点的KCC2变体显著多于对照组;而全基因组分析也提示,ASD患者与对照组相比更容易含有影响CpG位点的罕见KCC2变体;这些数据表明KCC2依赖的GABA信号的基因编码失调可能与ASD相关[61]。22q11.2微缺失综合征与认知和行为功能障碍、精神分裂症和ASD等疾病相关,动物研究发现该综合征存在NKCC1和KCC2蛋白表达水平失调[62]。已有研究发现15号染色体的异常除了与ASD症状相关外,与GABAA受体缺陷亦相关:Hogart等[63]在一个病例研究中发现两名ASD患者染色体15q11-13上的GABAA受体亚基因GABRB3、GABRA5、GABRG3功能失调;这个区域的异常会对信息处理和复杂认知行为产生负面影响[64]。在欧洲ASD患者拷贝数变异的研究中,发现了与GABA信号传导相关的基因变异,包括GABA受体的变构结合剂DBI、GABA受体相关蛋白GABARAPL1和突触后GABA转运体SLC6A11的变异[65]。此外,部分ASD患者存在单基因突变,这些突变的基因中存在一些与GABA突触功能有关的信号和支架蛋白基因,这些基因的突变会导致GABA能神经系统的功能障碍[66]。例如,编码蛋白质接触蛋白相关蛋白2(CNTNAP2)的基因中的缺失已经与ASD相关联,CNTNAP2的缺乏可导致小白蛋白和抑制性中间神经元的减少及抑制性信号传导的损伤[67]。因此,基因检测的结果提示ASD的发病与GABA信号通路密切相关。
ASD是一类多因素作用的复杂的神经发育障碍性疾病,其发病机制和临床症状具有高度异质性,关于疗效研究的结果不统一,应用ASD症状配合生物学标志进行ASD亚群研究对临床精准干预具有重要意义。GABA信号通路异常在ASD的发病机制中起重要作用,但其具体作用机制及作用亚群尚不明确,因此针对该通路设计的药物疗效尚不稳定。进一步完善GABA与ASD相互关系的研究,明确其在ASD发病机制中的作用,可为ASD的药物治疗提供理论依据。
[1] |
Developmental Disabilities Monitoring Monitor Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2010[J]. MMWR Surveill Summ, 2014, 63(2): 1-21. ( ![]() |
[2] |
Erickson CA, Wink LK, Early MC, et al. Brief report:pilot single-blind placebo lead-in study of acamprosate in youth with autistic disorder[J]. J Autism Dev Disord, 2014, 44(4): 981-987. DOI:10.1007/s10803-013-1943-3 ( ![]() |
[3] |
Robertson CE, Ratai EM, Kanwisher N. Reduced GABAergic action in the autistic brain[J]. Curr Biol, 2016, 26(1): 80-85. DOI:10.1016/j.cub.2015.11.019 ( ![]() |
[4] |
Hussman JP. Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism[J]. J Autism Dev Disord, 2001, 31(2): 247-248. DOI:10.1023/A:1010715619091 ( ![]() |
[5] |
Collins AL, Ma D, Whitehead PL, et al. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups[J]. Neurogenetics, 2006, 7(3): 167-174. DOI:10.1007/s10048-006-0045-1 ( ![]() |
[6] |
Ashley-Koch AE, Mei H, Jaworski J, et al. An analysis paradigm for investigating multi-locus effects in complex disease:examination of three GABA receptor subunit genes on 15q11-q13 as risk factors for autistic disorder[J]. Ann Hum Genet, 2006, 70(Pt 3): 281-292. ( ![]() |
[7] |
Ma DQ, Whitehead PL, Menold MM, et al. Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism[J]. Am J Hum Genet, 2005, 77(3): 377-388. DOI:10.1086/433195 ( ![]() |
[8] |
Cellot G, Cherubini E. GABAergic signaling as therapeutic target for autism spectrum disorders[J]. Front Pediatr, 2014, 2: 70. ( ![]() |
[9] |
Cellot G, Maggi L, Di Castro MA, et al. Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T+tf/J mice[J]. Sci Rep, 2016, 6: 31696. DOI:10.1038/srep31696 ( ![]() |
[10] |
Gogolla N, Leblanc JJ, Quast KB, et al. Common circuit defect of excitatory-inhibitory balance in mouse models of autism[J]. J Neurodev Disord, 2009, 1(2): 172-181. DOI:10.1007/s11689-009-9023-x ( ![]() |
[11] |
Ito S. GABA and glycine in the developing brain[J]. J Physiol Sci, 2016, 66(5): 375-379. DOI:10.1007/s12576-016-0442-7 ( ![]() |
[12] |
Schulte JT, Wierenga CJ, Bruining H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric conditions[J]. Neurosci Biobehav Rev, 2018, 90: 260-271. DOI:10.1016/j.neubiorev.2018.05.001 ( ![]() |
[13] |
Meador KJ, Loring DW. Risks of in utero exposure to valproate[J]. JAMA, 2013, 309(16): 1730-1731. DOI:10.1001/jama.2013.4001 ( ![]() |
[14] |
Tyzio R, Nardou R, Ferrari DC. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring[J]. Science, 2014, 343(6171): 675-679. DOI:10.1126/science.1247190 ( ![]() |
[15] |
Corradini I, Focchi E, Rasile M, et al. Maternal immune activation delays excitatory-to-inhibitory gamma-aminobutyric acid switch in offspring[J]. Biol Psychiatry, 2018, 83(8): 680-691. DOI:10.1016/j.biopsych.2017.09.030 ( ![]() |
[16] |
Hunter J, Rivero-Arias O, Angelov A, et al. Epidemiology of fragile X syndrome:a systematic review and meta-analysis[J]. Am J Med Genet A, 2014, 164A(7): 1648-1658. ( ![]() |
[17] |
Kidd SA, Lachiewicz A, Barbouth D, et al. Fragile X syndrome:a review of associated medical problems[J]. Pediatrics, 2014, 134(5): 995-1005. DOI:10.1542/peds.2013-4301 ( ![]() |
[18] |
Lozano R, Rosero CA, Hagerman RJ. Fragile X spectrum disorders[J]. Intractable Rare Dis Res, 2014, 3(4): 134-146. DOI:10.5582/irdr.2014.01022 ( ![]() |
[19] |
Williams TA, Porter MA, Langdon R. Social approach and emotion recognition in fragile X syndrome[J]. Am J Intellect Dev Disabil, 2014, 119(2): 133-150. DOI:10.1352/1944-7558-119.2.133 ( ![]() |
[20] |
Braat S, Kooy RF. The GABAA receptor as a therapeutic target for neurodevelopmental disorders[J]. Neuron, 2015, 86(5): 1119-1130. DOI:10.1016/j.neuron.2015.03.042 ( ![]() |
[21] |
Zeidler S, Pop AS, Jaafar IA, et al. Paradoxical effect of baclofen on social behavior in the fragile X syndrome mouse model[J]. Brain Behav, 2018, 8(6): e00991. DOI:10.1002/brb3.2018.8.issue-6 ( ![]() |
[22] |
Chao HT, Chen H, Samaco RC, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes[J]. Nature, 2010, 468(7321): 263-269. DOI:10.1038/nature09582 ( ![]() |
[23] |
Pizzarelli R, Cherubini E. Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice:an animal model of Autism[J]. Front Cell Neurosci, 2013, 7: 85. ( ![]() |
[24] |
Jaramillo TC, Liu S, Pettersen A, et al. Autism-related neuroligin-3 mutation alters social behavior and spatial learning[J]. Autism Res, 2014, 7(2): 264-272. DOI:10.1002/aur.1362 ( ![]() |
[25] |
Sgadò P, Genovesi S, Kalinovsky A, et al. Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice:Implications for autism spectrum disorders[J]. Exp Neurol, 2013, 247: 496-505. DOI:10.1016/j.expneurol.2013.01.021 ( ![]() |
[26] |
El-Ansary A, Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders[J]. J Neuroinflammation, 2014, 11: 189. DOI:10.1186/s12974-014-0189-0 ( ![]() |
[27] |
Oblak A, Gibbs TT, Blatt GJ. Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism[J]. Autism Res, 2009, 2(4): 205-219. DOI:10.1002/aur.v2:4 ( ![]() |
[28] |
Oblak AL, Gibbs TT, Blatt GJ. Decreased GABA(B) receptors in the cingulated cortex and fusiform gyrus in autism[J]. J Neurochem, 2010, 114(5): 1414-1423. ( ![]() |
[29] |
Guptill JT, Booker AB, Gibbs TT, et al. [3H]-flunitrazepamlabeled benzodiazepine binding sites in the hippocampal formation in autism:a multiple concentration autoradiographic study[J]. J Autism Dev Disord, 2007, 37(5): 911-920. DOI:10.1007/s10803-006-0226-7 ( ![]() |
[30] |
Whitney ER, Kemper TL, Bauman ML, et al. Cerebellar purkinje cells are reduced in a subpopulation of autistic brains:a stereological experiment using calbindin-D28k[J]. Cerebellum, 2008, 7(3): 406-416. DOI:10.1007/s12311-008-0043-y ( ![]() |
[31] |
Fatemi SH, Reutiman TJ, Folsom TD, et al. mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism[J]. J Autism Dev Disord, 2010, 40(6): 743-750. DOI:10.1007/s10803-009-0924-z ( ![]() |
[32] |
Crider A, Pandya CD, Peter D, et al. Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder[J]. Mol Autism, 2014, 5: 45. DOI:10.1186/2040-2392-5-45 ( ![]() |
[33] |
Mori T, Mori K, Fujii E, et al. Evaluation of the GABAergic nervous system in autistic brain:(123)I-iomazenil SPECT study[J]. Brain Dev, 2012, 34(8): 648-654. DOI:10.1016/j.braindev.2011.10.007 ( ![]() |
[34] |
Mendez MA, Horder J, Myers J, et al. The brain GABAbenzodiazepine receptor alpha-5 subtype in autism spectrum disorder:a pilot[(11)C]Ro15-4513 positron emission tomography study[J]. Neuropharmacology, 2013, 68: 195-201. DOI:10.1016/j.neuropharm.2012.04.008 ( ![]() |
[35] |
Horder J, Petrinovic MM, Mendez MA, et al. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models[J]. Transl Psychiatry, 2018, 8(1): 106. DOI:10.1038/s41398-018-0155-1 ( ![]() |
[36] |
Kirkovski M, Suo C, Enticott PG, et al. Short communication:sex-linked differences in gamma-aminobutyric acid (GABA) are related to social functioning in autism spectrum disorder[J]. Psychiatry Res Neuroimaging, 2018, 274: 19-22. DOI:10.1016/j.pscychresns.2018.02.004 ( ![]() |
[37] |
Rojas DC, Becker KM, Wilson LB. Magnetic resonance spectroscopy studies of glutamate and GABA in autism:implications for excitation-inhibition imbalance theory[J]. Curr Dev Disord Rep, 2015, 2(1): 46-57. DOI:10.1007/s40474-014-0032-4 ( ![]() |
[38] |
Gaetz W, Bloy L, Wang DJ, et al. GABA estimation in the brains of children on the autism spectrum:measurement precision and regional cortical variation[J]. Neuroimage, 2014, 86: 1-9. DOI:10.1016/j.neuroimage.2013.05.068 ( ![]() |
[39] |
Kubas B, Kułak W, Sobaniec W, et al. Metabolite alterations in autistic children:a 1H MR spectroscopy study[J]. Adv Med Sci, 2012, 57(1): 152-156. DOI:10.2478/v10039-012-0014-x ( ![]() |
[40] |
Rojas DC, Singel D, Steinmetz S, et al. Decreased left perisylvian GABA concentration in children with autism and unaffected siblings[J]. Neuroimage, 2014, 86: 28-34. DOI:10.1016/j.neuroimage.2013.01.045 ( ![]() |
[41] |
Cochran DM, Sikoglu EM, Hodge SM, et al. Relationship among glutamine, γ-aminobutyric acid, and social cognition in autism spectrum disorders[J]. J Child Adolesc Psychopharmacol, 2015, 25(4): 314-322. DOI:10.1089/cap.2014.0112 ( ![]() |
[42] |
Brix MK, Ersland L, Hugdahl K, et al. Brain MR spectroscopy in autism spectrum disorder-the GABA excitatory/inhibitory imbalance theory revisited[J]. Front Hum Neurosci, 2015, 9: 365. ( ![]() |
[43] |
Puts NAJ, Wodka EL, Harris AD, et al. Reduced GABA and altered somatosensory function in children with autism spectrum disorder[J]. Autism Res, 2017, 10(4): 608-619. DOI:10.1002/aur.2017.10.issue-4 ( ![]() |
[44] |
Balz J, Keil J, Roa Romero Y, et al. GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion[J]. Neuroimage, 2016, 125: 724-730. DOI:10.1016/j.neuroimage.2015.10.087 ( ![]() |
[45] |
Port RG, Gaetz W, Bloy L, et al. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD:Evidence for an altered maturational trajectory in ASD[J]. Autism Res, 2017, 10(4): 593-607. DOI:10.1002/aur.2017.10.issue-4 ( ![]() |
[46] |
Duarte ST, Armstrong J, Roche A, et al. Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett syndrome[J]. PLoS One, 2013, 8(7): e68851. DOI:10.1371/journal.pone.0068851 ( ![]() |
[47] |
Cohen BI. Use of a GABA-transaminase agonist for treatment of infantile autism[J]. Med Hypotheses, 2002, 59(1): 115-116. DOI:10.1016/S0306-9877(02)00157-3 ( ![]() |
[48] |
Lemonnier E, Ben-Ari Y. The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects[J]. Acta Paediatr, 2010, 99(12): 1885-1888. DOI:10.1111/j.1651-2227.2010.01933.x ( ![]() |
[49] |
Du L, Shan L, Wang B, et al. A pilot study on the combination of applied behavior analysis and bumetanide treatment for children with autism[J]. J Child Adolesc Psychophamacol, 2015, 25(7): 585-588. DOI:10.1089/cap.2015.0045 ( ![]() |
[50] |
Liu SC, Jia FY, Xia TL, et al. Cognitive dysfunction and bumetanide treatment in a valproate-induced rat model of autism[J]. Int J Clin Exp Med, 2016, 9(12): 23363-23374. ( ![]() |
[51] |
Mann K, Kiefer F, Spanagel R, et al. Acamprosate:recent findings and future research directions[J]. Alcohol Clin Exp Res, 2008, 32(7): 1105-1110. DOI:10.1111/acer.2008.32.issue-7 ( ![]() |
[52] |
Erickson CA, Mullett JE, McDougle CJ. Brief report:acamprosate in fragile X syndrome[J]. J Autism Dev Disord, 2010, 40(11): 1412-1416. DOI:10.1007/s10803-010-0988-9 ( ![]() |
[53] |
Erickson CA, Veenstra-Vanderweele JM, Melmed RD, et al. STX209(arbaclofen) for autism spectrum disorders:an 8-week open-label study[J]. J Autism Dev Disord, 2014, 44(4): 958-964. DOI:10.1007/s10803-013-1963-z ( ![]() |
[54] |
Silverman JL, Pride MC, Hayes JE, et al. GABAB receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism[J]. Neuropsychopharmacology, 2015, 40(9): 2228-2239. DOI:10.1038/npp.2015.66 ( ![]() |
[55] |
Tyzio R, Nardou R, Ferrari DC, et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring[J]. Science, 2014, 343(6171): 675-679. DOI:10.1126/science.1247190 ( ![]() |
[56] |
Zinni M, Colella M, Batista Novais AR, et al. Modulating the oxytocin system during the perinatal period:a new strategy for neuroprotection of the immature brain[J]. Front Neurol, 2018, 9: 229. DOI:10.3389/fneur.2018.00229 ( ![]() |
[57] |
Harden SW, Frazier CJ. Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus[J]. Hippocampus, 2016, 26(9): 1124-1139. DOI:10.1002/hipo.22595 ( ![]() |
[58] |
Han S, Tai C, Jones CJ, et al. Enhancement of inhibitory neurotransmission by GABAA receptors having α2, 3-subunits ameliorates behavioral deficits in a mouse model of autism[J]. Neuron, 2014, 81(6): 1282-1289. DOI:10.1016/j.neuron.2014.01.016 ( ![]() |
[59] |
Feng J, Shan L, Du L, et al. Clinical improvement following vitamin D3 supplementation in Autism Spectrum Disorder[J]. Nutr Neurosci, 2017, 20(5): 284-290. DOI:10.1080/1028415X.2015.1123847 ( ![]() |
[60] |
Sato K. Why is vitamin B6 effective in alleviating the symptoms of autism?[J]. Med Hypotheses, 2018, 115: 103-106. DOI:10.1016/j.mehy.2018.04.007 ( ![]() |
[61] |
Merner ND, Chandler MR, Bourassa C, et al. Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia[J]. Front Cell Neurosci, 2015, 9: 386. ( ![]() |
[62] |
Amin H, Marinaro F, De Pietri Tonelli D, et al. Developmental excitatory-to-inhibitory GABA-polarity switch is disrupted in 22q11.2 deletion syndrome:a potential target for clinical therapeutics[J]. Sci Rep, 2017, 7(1): 15752. DOI:10.1038/s41598-017-15793-9 ( ![]() |
[63] |
Hogart A, Nagarajan RP, Patzel KA, et al. 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders[J]. Hum Mol Genet, 2007, 16(6): 691-703. DOI:10.1093/hmg/ddm014 ( ![]() |
[64] |
Nakai N, Nagano M, Saitow F, et al. Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice[J]. Sci Adv, 2017, 3(6): e1603001. DOI:10.1126/sciadv.1603001 ( ![]() |
[65] |
Griswold AJ, Ma D, Cukier HN. Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways[J]. Hum Mol Genet, 2012, 21(15): 3513-3523. DOI:10.1093/hmg/dds164 ( ![]() |
[66] |
Chang J, Gilman SR, Chiang AH, et al. Genotype to phenotype relationships in autism spectrum disorders[J]. Nat Neurosci, 2015, 18(2): 191-198. DOI:10.1038/nn.3907 ( ![]() |
[67] |
Soghomonian JJ, Zhang K, Reprakash S, et al. Decreased parvalbumin mRNA levels in cerebellar Purkinje cells in autism[J]. Autism Res, 2017, 10(11): 1787-1796. DOI:10.1002/aur.2017.10.issue-11 ( ![]() |