川崎病(KD)是在儿童中常见的一种急性发热出疹性疾病,即皮肤黏膜淋巴结综合征,自1967年由日本学者第1次报道以来,发病率呈现逐渐增加的趋势。KD是一种非特异性系统性血管炎,以中小血管尤其冠状动脉为靶器官,冠状动脉损伤为KD最主要的潜在危害,严重者如冠状动脉瘤患者可迁延数年,虽然在治疗中丙种球蛋白的使用已经明显降低了冠状动脉损害的发生率,但在发达国家KD已经取代风湿性心脏病成为儿童后天性心脏病的主要病因[1]。KD病因及发病机制至今仍不清楚,目前关于KD发病机制主要集中在感染学说、超抗原学说、免疫细胞及细胞异常活化与分泌,以及血管内皮功能紊乱这几个方面[2-3]。
IL-1信号通路的活化在KD发病机制中起着重要作用[4]。IL-38和IL-1β均属于IL-1家族的成员,二者均在炎症反应和炎症性疾病中发挥着重要作用。近期报道KD急性期患者外周血IL-1β呈明显高水平表达[5]。IL-38作为一种新近发现的主要发挥抗炎作用的细胞因子,在炎症性疾病中的作用也引起大家越来越多的关注[6],IL-38水平在银屑病患者中明显降低,而在类风湿性关节炎、系统性红斑狼疮、炎症性肠病及儿童哮喘中表达明显增加[7-10],并在其炎症反应中发挥重要作用。目前尚无关于IL-38与KD之间的相关性研究。KD为儿童常见的一种系统性血管炎性疾病,那么IL-38是否在KD的急性期炎症反应中发挥重要作用?是否参与KD的心血管损害?因此本研究重点探讨IL-38和IL-1β与KD急性期炎症反应及冠状动脉损伤的相关性。
1 资料与方法 1.1 研究对象及分组选取本院2015年7月至2016年6月住院的KD患儿40例为研究对象,其中男24例,女16例,平均年龄2.95±2.62岁。纳入标准:(1)根据KD诊断标准[11]确诊为KD;(2)未接受过治疗的初发患儿;(3)有完整临床及实验室检查资料。排除标准:(1)血培养阳性的败血症病例;(2)伴随其他心血管或高血压疾病,以及伴有肿瘤、血液病、先天性畸形、遗传代谢病、原发性心肌炎、重要脏器的原发性疾病;(3)已接受过治疗的复发患儿;(4)无完整临床及实验室检查资料。另外选取在我院体检的30例健康儿童作为健康对照组,其中男18例,女12例,平均年龄3.16±0.16岁;选取19例于我院住院的感染发热患儿作为发热对照组,其中男16例,女3例,平均年龄3.00±1.87岁。纳入标准:(1)诊断为上呼吸道感染(n=7)或肺炎(n=12);(2)抗生素治疗有效;(3)有完整临床及实验室检查资料。排除标准:(1)病因不明;(2)伴随其他心血管或高血压疾病,及伴有肿瘤、血液病、先天性畸形、遗传代谢病、原发性心肌炎、重要脏器的原发性疾病;(3)已接受过抗生素或其他治疗;(4)无完整临床及实验室检查资料。各组在性别及年龄上均匹配,具有可比性。
所有患儿行心脏超声心动图检查,根据2017年AHA更新的KD诊断及治疗指南[11],按照冠状动脉受累程度分级分期标准分为冠状动脉损伤(CAL)组和无冠状动脉损伤(NCAL)组,CAL组包括冠状动脉扩张、狭窄、冠状动脉瘤,冠状动脉扩张按照Z值可分为以下几类:(1)无冠状动脉扩张:Z值< 2;(2)仅冠状动脉扩张:2≤Z值< 2.5,或发病初期Z值< 2,随访期间Z值降低≥1;(3)小动脉瘤:2.5≤Z值< 5;(4)中动脉瘤:5≤Z值< 10,或绝对大小 < 8 mm;(5)大或巨大动脉瘤:Z值≥10,或绝对大小≥8 mm。其中CAL组21例,均为仅冠状动脉扩张(2≤Z值< 2.5),NCAL组19例。KD患儿均在确诊10 d内接受静脉注射免疫球蛋白(IVIG)(2 g/kg)单次静脉输注给药和口服阿司匹林(每日30~50 mg/kg),体温正常3 d后阿司匹林减量至维持量(每日3~5 mg/kg)治疗。本研究程序均遵循华中科技大学同济医学院附属同济医院医学伦理委员会所制定的伦理学标准并得到该委员会的批准,且均取得研究对象家长的知情同意。
1.2 标本的收集及检测方法KD组及发热对照组患儿于入院第1天(急性期),健康对照组儿童于健康体检时,采集外周静脉血2 mL于肝素抗凝管中,分离血清于-80℃保存。采用ELISA法检测血清中细胞因子IL-1β和IL-38水平,其中IL-1β试剂盒(550610)由美国BD公司提供,IL-38试剂盒(EHC111.96)由NeoBioscience公司提供,检测仪器为德国西门子公司全自动酶标分析仪(9650),操作步骤严格按照试剂盒说明书进行,通过450 nm波长测量吸光度值并且绘制标准曲线求得细胞因子浓度值。另采集KD组及发热对照组患儿外周静脉血2 mL,其他常规检查包括血常规、白细胞介素-6(IL-6)、C-反应蛋白(CRP)、血沉(ESR)、降钙素原(PCT)、氨基末端脑钠肽前体(NT-ProBNP)、铁蛋白、甘油三酯(TG)和血总胆固醇(TC)等生化指标水平检测由我院检验科完成;心脏超声心动图检查由我院心功能室和儿科心血管研究室完成。
1.3 统计学分析采用SPSS 20.0统计软件对数据进行统计学分析,正态分布计量资料以均数±标准差(x±s)表示,两组间比较采用两独立样本t检验;非正态分布计量资料以中位数(四分位间距)[M(P25,P75)]表示,两组间比较采用Mann-Whitney U检验,多组间比较采用Kruskal-Wallis H检验,组间两两比较采用Nemenyi检验;相关性分析采用Spearman秩相关。P < 0.05为差异有统计学意义。
2 结果 2.1 KD组与发热对照组患儿实验室指标检测结果急性期KD患儿ESR、CRP、IL-6、NT-proBNP水平明显高于发热对照组(P < 0.05),而HB和TC水平则明显低于发热对照组(P < 0.05),PLT、TG和铁蛋白水平在两组间比较差异无统计学意义(P > 0.05),见表 1。
表 1 KD组和发热对照组实验室各检测指标比较 (x±s)或[M(P25,P75)] |
![]() |
KD患儿急性期血清IL-38水平明显低于健康对照组(P < 0.05),但高于发热对照组(P < 0.05);而IL-1β水平则明显高于健康对照组(P < 0.05),但与发热对照组相比差异无统计学意义(P > 0.05)。见表 2。
表 2 各组儿童血清细胞因子IL-38和IL-1β水平比较 |
![]() |
NCAL组IL-38水平较CAL组无明显差异(P > 0.05);而IL-1β水平在NCAL组较CAL组虽然有升高趋势,但差异同样无统计学意义(P > 0.05);CAL组CRP及IL-6水平明显高于NCAL组(P < 0.05),其他实验室检测指标在两组间比较差异均无统计学意义(P > 0.05)。见表 3。
表 3 冠状动脉损伤和无冠状动脉损伤KD患儿间实验室各检测指标及血清细胞因子IL-38、IL-1β水平比较 |
![]() |
进一步分析这些实验室指标与IL-38和IL-1β之间的相关性,结果显示IL-38及IL-1β分别与CRP、ESR、IL-6、HB、PLT、NT-proBNP、PCT及血脂(TG、TC)之间均无明显相关性(均P > 0.05),且IL-38与IL-1β之间亦无相关性(P > 0.05),见表 4。
表 4 IL-38和IL-1β与其他炎性指标之间的相关性分析 |
![]() |
IL-38和IL-1β均属于IL-1家族的成员,二者均在炎症反应和炎症性疾病中发挥着重要作用。IL-1受体拮抗剂anakinra已经在全身型幼年特发性关节炎、巨噬细胞活化综合征、家族性地中海热、特发性心包炎等多种自身免疫性疾病中得到应用[12]。已有相关病例报道称IL-1受体拮抗剂在难治性KD中发挥重要作用[13]。IL-38主要在皮肤及扁桃体活化的B细胞表达,但其mRNA可在心脏、胎盘、皮肤、脾脏、胸腺和扁桃体广泛表达[14]。IL-38可与IL-1Ι型受体及IL-36受体结合,从而可在炎症反应中发挥类似IL-1受体拮抗剂和IL-36受体拮抗剂的抗炎作用[15-16],而IL-1β主要在炎症反应中发挥促炎作用。本研究发现KD急性期血清IL-38水平明显降低,但却高于一般发热患儿,可能与其发挥抗炎作用相关;而IL-1β则与IL-38相反,在KD急性期IL-1β明显升高并且促进炎症反应的发生。
目前尽管KD发病机制仍不清楚,但是IL-1信号通路的活化在KD发病机制中起着重要作用[4],早期有研究发现KD急性期患儿IL-1水平明显升高,且与内皮细胞活化相关[17-18]。在KD动物模型研究中也发现IL-1信号通路参与KD的发病,且IL-1受体拮抗剂可以抑制小鼠大动脉异常扩张和冠状动脉瘤的形成[19-20]。近期也有报道KD急性期患儿外周血IL-1β呈明显高水平表达;IVIG的应用明显降低了KD患儿冠状动脉损伤的发生率[21],其可能的机制之一即为IVIG可以增加人单核细胞内IL受体拮抗剂的表达,从而降低KD急性期炎症反应[12]。新近的病例报道中KD患儿伴冠状动脉扩张和噬血细胞综合征且IVIG耐药的情况下,使用anakinra不仅可以减轻症状,且可以改善冠状动脉扩张和预后[13, 22]。本研究发现KD急性期患儿细胞因子IL-1β水平明显升高,与之前研究结果一致[18, 23],即KD急性期炎症小体活性增强,促进IL-1β的分泌,分泌到胞外的IL-1β与免疫细胞表面的IL-1受体相结合,活化IL-1信号通路,加重炎症反应。
IL-38亦是IL-1家族新进发现的成员之一,IL-38基因多态性与银屑病性关节炎、强直性脊柱炎及心血管疾病相关[24]。但与炎性因子IL-1β作用不同的是IL-38可在多种炎症性疾病中发挥重要的抗炎作用。研究发现系统性红斑狼疮(SLE)患者外周血IL-38水平明显增加[10, 25],另外,儿童哮喘及ST段抬高性急性心肌梗死患者外周血IL-38水平明显升高[9, 26]。在体外研究中,高表达的IL-38在类风湿性关节炎小鼠模型中可通过巨噬细胞和滑膜成纤维细胞降低促炎性细胞因子的合成和分泌,进而减轻炎症反应[27-28]。而在SLE动物模型中,IL-38可抑制小鼠脾脏Th17细胞的分化,降低血清IL-17、IL-22,以及促炎因子IL-6和IL-1β的表达;另外IL-38可下调Th17细胞相关基因的表达进而减轻炎症反应;且IL-38可通过抑制炎性细胞因子的产生及T淋巴细胞活化减轻SLE患者的皮肤和肾脏炎症[29]。IL-38还可抑制氧诱导的视网膜疾病的血管新生,为血管再生相关疾病提供新的治疗思路[30]。IL-38可与IL-36受体相结合,在免疫反应中发挥类似IL-36受体的抗炎作用[16],且IL-38基因与IL-36受体拮抗剂和IL-1受体拮抗剂高度同源,目前普遍认为IL-38主要通过降低巨噬细胞及Th17细胞相关基因的表达,以及抑制相关炎性细胞因子诸如IL-17、IL-22、IL-6和IL-1β的分泌而在多种炎症相关性疾病中发挥抗炎作用[27, 31]。
本研究发现IL-38在KD患儿急性期表现出明显低水平,与炎性细胞因子IL-1β呈现出明显相反的趋势,虽然相关性分析中未发现IL-38与IL-6等炎性因子之间明显的相关性,但有研究显示KD急性期存在明显的Th17/Treg失衡,且Th17细胞比例及其相关细胞因子均明显增加[2-3]。据此我们推测IL-38参与KD急性期炎症反应,可能通过调节免疫反应平衡及其相关细胞因子的分泌而在KD急性期炎症反应及内皮损伤中发挥重要作用,但其具体作用机制仍有待于进一步研究。
通过本研究发现IL-38作为新型的抗炎因子,将为难治性KD及巨大冠状动脉扩张和冠状动脉瘤患儿提供新的治疗思路,但本研究仍然存在一定的局限性,需要加强多中心合作增加样本量进一步确定IL-38与KD的相关性,且需要深入研究IL-38在KD炎症反应及内皮损伤中的具体作用机制。
[1] |
Shulman ST, Rowley AH. Kawasaki disease:insights into pathogenesis and approaches to treatment[J]. Nat Rev Rheumatol, 2015, 11(8): 475-482. DOI:10.1038/nrrheum.2015.54 ( ![]() |
[2] |
Guo MM, Tseng WN, Ko CH, et al. Th17-and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease[J]. Allergy, 2015, 70(3): 310-318. DOI:10.1111/all.2015.70.issue-3 ( ![]() |
[3] |
Jia S, Li C, Wang G, et al. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease[J]. Clin Exp Immunol, 2010, 162(1): 131-137. DOI:10.1111/j.1365-2249.2010.04236.x ( ![]() |
[4] |
Barranco C. Vasculitis syndromes:Kawasaki disease is IL-1β-mediated[J]. Nat Rev Rheumatol, 2016, 12(12): 693. ( ![]() |
[5] |
Alphonse MP, Duong TT, Shumitzu C, et al. Inositoltriphosphate 3-kinase C mediates inflammasome activation and treatment response in Kawasaki disease[J]. J Immunol, 2016, 197(9): 3481-3489. DOI:10.4049/jimmunol.1600388 ( ![]() |
[6] |
Garraud T, Harel M, Boutet MA, et al. The enigmatic role of IL-38 in inflammatory diseases[J]. Cytokine Growth Factor Rev, 2018, 39: 26-35. DOI:10.1016/j.cytogfr.2018.01.001 ( ![]() |
[7] |
Boutet MA, Bart G, Penhoat M, et al. Distinct expression of interleukin (IL)-36α, β and γ, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn's disease[J]. Clin Exp Immunol, 2016, 184(2): 159-173. DOI:10.1111/cei.2016.184.issue-2 ( ![]() |
[8] |
Hahn M, Frey S, Hueber AJ. The novel interleukin-1 cytokine family members in inflammatory diseases[J]. Curr Opin Rheumatol, 2017, 29(2): 208-213. DOI:10.1097/BOR.0000000000000361 ( ![]() |
[9] |
Chu M, Chu IM, Yung EC, et al. Aberrant expression of novel cytokine IL-38 and regulatory T lymphocytes in childhood asthma[J]. Molecules, 2016, 21(7): e933. DOI:10.3390/molecules21070933 ( ![]() |
[10] |
Takeuchi Y, Seki T, Kobayashi N, et al. Analysis of serum IL-38 in juvenile-onset systemic lupus erythematosus[J]. Mod Rheumatol, 2018. [Epub ahead of print] http://www.tandfonline.com/doi/abs/10.1080/14397595.2018.1436118
( ![]() |
[11] |
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease:a scientifc statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. DOI:10.1161/CIR.0000000000000484 ( ![]() |
[12] |
Burns JC, Koné-Paut I, Kuijpers T, et al. Review:found in translation:international initiatives pursuing interleukin-1 blockade for treatment of acute Kawasaki disease[J]. Arthritis Rheumatol, 2017, 69(2): 268-276. DOI:10.1002/art.39975 ( ![]() |
[13] |
Cohen S, Tacke CE, Straver B, et al. A child with severe relapsing Kawasaki disease rescued by IL-1 receptor blockade and extracorporeal membrane oxygenation[J]. Ann Rheum Dis, 2012, 71(12): 2059-2061. DOI:10.1136/annrheumdis-2012-201658 ( ![]() |
[14] |
Yuan X, Peng X, Li Y, et al. Role of IL-38 and its related cytokines in inflammation[J]. Mediators Inflamm, 2015, 2015: 807976. ( ![]() |
[15] |
Lin H, Ho AS, Haley-Vicente D, et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member[J]. J Biol Chem, 2001, 276(23): 20597-20602. DOI:10.1074/jbc.M010095200 ( ![]() |
[16] |
van de Veerdonk FL, Stoeckman AK, Wu G, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist[J]. Proc Natl Acad Sci U S A, 2012, 109(8): 3001-3005. DOI:10.1073/pnas.1121534109 ( ![]() |
[17] |
Leung DY, Geha RS, Newburger JW, et al. Two monokines, interleukin 1 and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome[J]. J Exp Med, 1986, 164(6): 1958-1972. DOI:10.1084/jem.164.6.1958 ( ![]() |
[18] |
Leung DY, Cotran RS, Kurt-Jones E, et al. Endothelial cell activation and high interleukin-1 secretion in the pathogenesis of acute Kawasaki disease[J]. Lancet, 1989, 2(8675): 1298-1302. ( ![]() |
[19] |
Lee Y, Schulte DJ, Shimada K, et al. Interleukin-1β is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease[J]. Circulation, 2012, 125(12): 1542-1550. DOI:10.1161/CIRCULATIONAHA.111.072769 ( ![]() |
[20] |
Lee Y, Wakita D, Dagvadorj J, et al. IL-1 signaling is critically required in stromal cells in Kawasaki disease vasculitis mouse model:role of both IL-1α and IL-1β[J]. Arterioscler Thromb Vasc Biol, 2015, 35(12): 2605-2616. DOI:10.1161/ATVBAHA.115.306475 ( ![]() |
[21] |
Ogata S, Tremoulet AH, Sato Y, et al. Coronary artery outcomes among children with Kawasaki disease in the United States and Japan[J]. Int J Cardiol, 2013, 168(4): 3825-3828. DOI:10.1016/j.ijcard.2013.06.027 ( ![]() |
[22] |
Shafferman A, Birmingham JD, Cron RQ. High dose Anakinra for treatment of severe neonatal Kawasaki disease:a case report[J]. Pediatr Rheumatol Online J, 2014, 12: 26. DOI:10.1186/1546-0096-12-26 ( ![]() |
[23] |
Alphonse MP, Duong TT, Shumitzu C, et al. Inositoltriphosphate 3-kinase C mediates inflammasome activation and treatment response in Kawasaki disease[J]. J Immunol, 2016, 197(9): 3481-3489. DOI:10.4049/jimmunol.1600388 ( ![]() |
[24] |
van de Veerdonk FL, de Graaf DM, Joosten LA, et al. Biology of IL-38 and its role in disease[J]. Immunol Rev, 2018, 281(1): 191-196. DOI:10.1111/imr.2018.281.issue-1 ( ![]() |
[25] |
Rudloff I, Godsell J, Nold-Petry CA, et al. Brief report:interleukin-38 exerts antiinflammatory functions and is associated with disease activity in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2015, 67(12): 3219-3225. DOI:10.1002/art.39328 ( ![]() |
[26] |
Zhong Y, Yu K, Wang X, et al. Elevated plasma IL-38 concentrations in patients with acute ST-segment elevation myocardial infarction and their dynamics after reperfusion treatment[J]. Mediators Inflamm, 2015, 2015: 490120. ( ![]() |
[27] |
Boutet MA, Najm A, Bart G, et al. IL-38 overexpression induces anti-inflammatory effects in mice arthritis models and in human macrophages in vitro[J]. Ann Rheum Dis, 2017, 76(7): 1304-1312. DOI:10.1136/annrheumdis-2016-210630 ( ![]() |
[28] |
Ummarino D. Experimental arthritis:IL-38 promotes antiinflammatory effects[J]. Nat Rev Rheumatol, 2017, 13(5): 260. ( ![]() |
[29] |
Chu M, Tam LS, Zhu J, et al. In vivo anti-inflammatory activities of novel cytokine IL-38 in Murphy Roths Large (MRL)/lpr mice[J]. Immunobiology, 2017, 222(3): 483-493. DOI:10.1016/j.imbio.2016.10.012 ( ![]() |
[30] |
Zhang J, Zhao R, Chen J, et al. The effect of interleukin 38 on angiogenesis in a model of oxygen-induced retinopathy[J]. Sci Rep, 2017, 7(1): 2756. DOI:10.1038/s41598-017-03079-z ( ![]() |
[31] |
Mora J, Schlemmer A, Wittig I, et al. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses[J]. J Mol Cell Biol, 2016. [Epub ahead of print]. http://www.ncbi.nlm.nih.gov/pubmed/26892022
( ![]() |