中国当代儿科杂志  2018, Vol. 20 Issue (7): 594-597  DOI: 10.7499/j.issn.1008-8830.2018.07.016

引用本文  

蔡科, 王凤, 桂永浩. 川崎病家庭发病的相关机制研究进展[J]. 中国当代儿科杂志, 2018, 20(7): 594-597.
CAI Ke, WANG Feng, GUI Yong-Hao. Research advances in the pathogenesis of familial Kawasaki disease[J]. Chinese Journal of Contemporary Pediatrics, 2018, 20(7): 594-597.

作者简介

蔡科, 男, 硕士研究生。Email:yhgui@shmu.edu.cn

文章历史

收稿日期:2018-04-10
接受日期:2018-05-14
川崎病家庭发病的相关机制研究进展
蔡科 , 王凤 , 桂永浩     
复旦大学附属儿科医院心血管中心, 上海 201102
摘要:川崎病已成为北美和日本等地儿童获得性心脏病的主要原因。该病的发病率存在明显的地区和种族差异,患者的一级亲属罹患此病的风险较普通人群明显升高。该文回顾了近年来各地川崎病家庭发病的相关情况,并对其可能的发病机制进行综述。
关键词川崎病    家庭    发病机制    儿童    
Research advances in the pathogenesis of familial Kawasaki disease
CAI Ke , WANG Feng , GUI Yong-Hao     
Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
Abstract: Kawasaki disease has become the leading cause of acquired heart disease in children in North America and Japan. The incidence rate of Kawasaki disease varies signifcantly across regions and races. The frst-degree relatives of patients with Kawasaki disease have a signifcantly higher risk of this disease than the general population. This article reviews the onset of familial Kawasaki disease and possible pathogenesis.
Keywords: Kawasaki disease    Family    Pathogenesis    Child    

川崎病(Kawasaki disease, KD)是一种急性中小动脉血管炎,主要累及冠状动脉,大约15%~25%未经治疗的儿童会发生冠状动脉损害(coronary arterial lesion, CAL),严重者导致缺血性心脏病或猝死[1],已成为北美和日本等地儿童获得性心脏病的最主要原因[2]

KD家庭发病指的是家族中一人以上同时或先后罹患KD[3],多发生在一级亲属之间,如父母和子女之间、同胞(本文中一般指同一父母所生的兄弟姐妹)之间,也可见于二级亲属(祖父母、外祖父母、叔、伯、舅、姑、姨等)和三级亲属(表兄妹、堂兄妹)之间。研究发现,亚裔人群即使移民到欧洲和美洲,其KD发病率仍明显高于当地人[4],而在亚洲生活的白种人KD发病率和欧洲整体白种人的发病率相近[5];且有KD家族史的患儿同胞罹患KD的风险显著高于普通人群(OR=6.94;95%CI=2.77~17.38),同时这些患儿也更易发生CAL(OR=2.52;95%CI=1.20~5.30)和KD复发(OR=2.88;95%CI=1.24~6.67)[6-7],提示KD的发生与种族及遗传因素密切相关。此外,研究显示KD的发生与感染或免疫因素引起的机体免疫系统异常活化、细胞因子及炎症介质、血管内皮损伤及功能紊乱等有关[8-9]。因此,为进一步明确KD家庭发病的可能机制,加强对患者家庭成员的KD风险评估及对易感人群的保护,本文拟对近年来各地报道的KD家庭发病的情况进行分析,并对其可能的发病机制进行综述。

1 KD家庭发病的病例回顾

日本在1999~2008年通过调查全国范围的KD住院患儿来确定其父母是否有KD病史。在这10年里,共有407名(0.43%)患儿的父母曾经罹患KD,其数量和比例均呈逐年上升趋势[10]。1999~2002年日本另一项全国范围KD的调查结果表明,父母有KD病史的患儿同胞的KD发病风险显著增加(OR=6.94;95%CI=2.77~17.38),同时,后代平均发病年龄低于父母(25.6±17.2月vs 41.8±23.7月,P=0.10)[6]。美国监测儿童时期患KD妇女的产科管理和妊娠结局,发现10例有KD病史女性的21次妊娠中有2个后代发生了KD[11]。美国加利福尼亚大学圣地亚哥分校对美国北部医疗中心的医疗记录进行回顾性分析,发现了多个成员有KD病史的18个家庭,其中的9个家庭均为同胞二人患KD,余下9个复杂KD家系共包括24名患儿,但从他们的遗传系谱无法推断出明确的遗传方式[3]

此外,KD家庭发病的病例报告还包括父母一方和子女中的一个先后患病[12-13],以及同胞之间同时或相继患病[14-15]。其中,波兰的一位男性患儿的姐姐在3岁时患KD,而男孩自身至4岁时经历了3次KD的反复发作[16]。国内关于KD家庭成员受累的文献较少,仅有姑表兄弟患病[17]及同胞同时或先后患病的少量报道[18-20]。日本报道的KD同胞发病率是1.9%[21],我国的流行病学调查结果则显示KD同胞发病率约0.2%[22-23]

2 KD家庭发病的可能机制 2.1 感染因素

日本调查了1969~1983年间KD患儿同胞的患病情况,发现54.1%的家庭中第2例KD的发生均在首例KD出现后的10 d之内,甚至有4个家庭的两个孩子(10%)在同一天发病,提示家庭成员间KD的发生可能存在共同的感染源[24]。人群中关于KD发病时间和空间分布的研究表明其与儿科其他常见病毒感染的特征高度相似[25]。Chang等[26]对226名KD儿童和226名年龄及性别相匹配的健康儿童通过咽拭子或聚合酶链式反应分离病毒,发现KD病例组总体病毒阳性率显著高于正常对照组(52.7% vs 16.4%,P < 0.001)。2004年2月至2008年9月,台湾开展了一项KD家庭感染方式和病因的调查,共纳入142例KD患者及其561名家庭成员,其中81%为患者的兄弟姐妹、父母或祖父母。所有人均接受了关于疾病接触史、感染迹象和症状的问卷调查采访,以便确定是否发生了上呼吸道感染、咽扁桃体炎和急性胃肠炎等急性感染,并同时对家庭成员中发生感染症状的患者进行咽拭子病毒分离检测。结果显示,KD发病前10 d内,66%的患者与家庭成员存在接触;KD发病当天,4%的患者家属发生了其他感染性疾病;KD发病后10 d内,70%的KD患者出现至少1名家庭成员患其他感染性疾病的情况。在KD急性期,61%(343/561)的患者家庭成员发生急性感染性疾病,而92%(130/140)的家庭有感染症状发生,其病毒培养的结果包含肠道病毒、流感病毒和腺病毒等[27-28],进一步说明KD的家庭发病与病毒感染密切相关,并可能为同一感染源导致。

2.2 免疫系统调节异常

目前研究表明,KD的发生主要与获得性免疫功能异常有关,而在KD急性期发挥作用的主要是固有免疫[29]。研究发现,KD急性期CD4+辅助T细胞和血小板上的CD40配体表达明显增高,其中发生CAL的患者CD40配体的升高水平更为明显[30]。Onouchi等[31]对日本患KD的患者同胞CD40配体基因进行分析,发现该基因第4内含子的单核苷酸多态性(single nucleotide polymorphisms, SNPs)位点(IVS4+121 A > G)可能与KD的发生风险相关(18.1% vs 15.1%);且和正常对照组相比,携带该SNPs的男性患者发生CAL的比例更高(25.9% vs 15.1%,OR=2.0;95%CI=1.07~2.66;P=0.03)。Wang等[32]发现应用静脉注射人免疫球蛋白(IVIG)前,KD患者血清中IL-6、IL-10、TNF-α和IFN-γ均显著上升,治疗后IL-6、IL-10和IFN-γ水平迅速下降,但发生IVIG抵抗或CAL的患者TNF-α水平反而上升,提示免疫系统调节异常与KD的发生密切相关。

2.3 遗传因素

全基因组关联分析(genome-wide association studies, GWAS)和连锁分析加快了KD易感基因的研究进展。研究发现,人类组织相容性抗原区域(human leukocyte antigen, HLA)SNPs和KD的发生相关,如HLA-C*15和HLA-B*44[33]。依据Xie等[34]对2017年3月前发表的研究KD基因的相关文献系统综述和Mete分析结果,共有23个SNPs与KD易感性显著相关,10个SNPs和KD的CAL风险显著相关。目前家庭和人群研究已报道的5个川崎病主要易感基因是ITPKC[35]、CASP3[36]、BLK[37]、CD40[38]、FCGR2A[39-40]。其中BLK和CD40还是类风湿性关节炎、系统性红斑狼疮等多种自身免疫性疾病的易感基因[41-42],KD和这些疾病SNPs一致或者属于同一SNPs高度连锁不平衡组;而未见ITPKC和CASP3的SNPs与其他疾病相关的GWAS报道[43]。同时,Onouchi等[44]报道携带ITPKC基因rs28493229 C等位基因和CASP3基因rs113420705 A等位基因的KD患者更容易发生IVIG耐受和CAL。Labuda等[45]分析了有两个KD患儿的非裔美国人一家六口的基因组发现,两个孩子的发病可能和Toll样受体6(Toll-like receptor 6, TLR6)位点rs56245262相关,而之前欧洲人群中已经报道了KD发生和TLR6基因相关的3个多态位点(rs56245262、rs56083757和rs7669329)。TLR6与TLR2形成的二聚体能识别细菌等病原体的抗原,并激活抗炎因子相关基因的表达。TLR6广泛表达于人的免疫细胞,可激活转录因子NFKB和AP1调节IL-6等相关免疫因子表达[46],而TLR6突变可导致免疫系统功能异常,继而诱发KD。这些研究结果进一步显示了遗传因素在KD家庭发病机制中的作用,并为KD治疗和CAL的早期预测及干预提供了新的靶点。

3 小结

KD家庭发病多是在一定的易感基因基础上发生免疫系统调节异常, 并在感染等因素的诱导下发生。相关基因的SNPs研究有助于预测患者CAL风险和其他家庭成员的KD发病风险。同时,目前尚未明确KD家庭发病的具体感染病原,仍需要进一步的研究揭示相关的发病机制,以期为KD的诊治提供更好的依据。

参考文献
[1]
Newburger JW, Takahashi M, Burns JC. Kawasaki disease[J]. J Am Coll Cardiol, 2016, 67(14): 1738-1749. DOI:10.1016/j.jacc.2015.12.073 (0)
[2]
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease:a scientifc statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. DOI:10.1161/CIR.0000000000000484 (0)
[3]
Dergun M, Kao A, Hauger SB, et al. Familial occurrence of Kawasaki syndrome in North America[J]. Arch Pediatr Adolesc Med, 2005, 159(9): 876-881. DOI:10.1001/archpedi.159.9.876 (0)
[4]
Harnden A, Mayon-White R, Perera R, et al. Kawasaki disease in England:ethnicity, deprivation, and respiratory pathogens[J]. Pediatr Infect Dis J, 2009, 28(1): 21-24. DOI:10.1097/INF.0b013e3181812ca4 (0)
[5]
Holman RC, Christensen KY, Belay ED, et al. Racial/ethnic differences in the incidence of Kawasaki syndrome among children in Hawaii[J]. Hawaii Med J, 2010, 69(8): 194-197. (0)
[6]
Uehara R, Yashiro M, Nakamura Y, et al. Clinical features of patients with Kawasaki disease whose parents had the same disease[J]. Arch Pediatr Adolesc Med, 2004, 158(12): 1166-1169. DOI:10.1001/archpedi.158.12.1166 (0)
[7]
Sudo D, Nakamura Y. Nationwide surveys show that the incidence of recurrent Kawasaki disease in Japan has hardly changed over the last 30 years[J]. Acta Paediatr, 2017, 106(5): 796-800. DOI:10.1111/apa.13773 (0)
[8]
Zhu FH, Ang JY. The clinical diagnosis and management of Kawasaki disease:a review and update[J]. Curr Infect Dis Rep, 2016, 18(10): 32. DOI:10.1007/s11908-016-0538-5 (0)
[9]
Yoon KL. Update of genetic susceptibility in patients with Kawasaki disease[J]. Korean J Pediatr, 2015, 58(3): 84-88. DOI:10.3345/kjp.2015.58.3.84 (0)
[10]
Uehara R, Yashiro M, Nakamura Y, et al. Parents with a history of Kawasaki disease whose child also had the same disease[J]. Pediatr Int, 2011, 53(4): 511-514. DOI:10.1111/ped.2011.53.issue-4 (0)
[11]
Gordon CT, Jimenez-Fernandez S, Daniels LB, et al. Pregnancy in women with a history of Kawasaki disease:management and outcomes[J]. BJOG, 2014, 121(11): 1431-1438. DOI:10.1111/1471-0528.12685 (0)
[12]
Mori M, Miyamae T, Kurosawa R, et al. Two-generation Kawasaki disease:mother and daughter[J]. J Pediatr, 2001, 139(5): 754-756. (0)
[13]
Bruckheimer E, Bulbul Z, McCarthy P, et al. Images in cardiovascular medicine. Kawasaki disease:coronary aneurysms in mother and son[J]. Circulation, 1998, 97(4): 410-411. DOI:10.1161/01.CIR.97.4.410 (0)
[14]
Caquard M, Parlier G, Siret D. Family observation of Kawasaki disease:2 cases in sister and brother[J]. Arch Pediatr, 2006, 13(5): 453-455. DOI:10.1016/j.arcped.2006.02.012 (0)
[15]
Türel Ö, Bornaun H, Hatipoglu N, et al. Kawasaki disease in dizygotic twins in Turkey[J]. J Rheumatol, 2011, 38(8): 1812-1813. DOI:10.3899/jrheum.110286 (0)
[16]
Kraszewska-Glomba B, Kuchar E, Szenborn L. Three episodes of Kawasaki disease including one after the Pneumo 23 vaccine in a child with a family history of Kawasaki disease[J]. J Formos Med Assoc, 2016, 115(10): 885-886. DOI:10.1016/j.jfma.2016.04.005 (0)
[17]
高天霁. 姑表兄弟同患川崎病2例报道[J]. 中国当代儿科杂志, 2012, 14(4): 314-315. (0)
[18]
张谦慎, 董国庆. 同胞共患川崎病三例[J]. 中国优生与遗传杂志, 2007, 15(2): 109. (0)
[19]
张俊红, 徐华, 张蕾. 双胞胎兄弟同患川崎病[J]. 空军总医院学报, 2003, 19(2): 96. (0)
[20]
贺传芬. 一家姐弟俩同患川崎病[J]. 武汉医学杂志, 1996, 20(3): 176. (0)
[21]
Makino N, Nakamura Y, Yashiro M, et al. Epidemiological observations of Kawasaki disease in Japan, 2013-2014[J]. Pediatr Int, 2018. doi: 10.1111/ped.13544.[Epubaheadofprint]. (0)
[22]
Du ZD, Zhao D, Du J, et al. Epidemiologic study on Kawasaki disease in Beijing from 2000 through 2004[J]. Pediatr Infect Dis J, 2007, 26(5): 449-451. DOI:10.1097/01.inf.0000261196.79223.18 (0)
[23]
Chen JJ, Ma XJ, Liu F, et al. Epidemiologic features of Kawasaki disease in Shanghai from 2008 through 2012[J]. Pediatr Infect Dis J, 2016, 35(1): 7-12. (0)
[24]
Fujita Y, Nakamura Y, Sakata K, et al. Kawasaki disease in families[J]. Pediatrics, 1989, 84(4): 666-669. (0)
[25]
Nagao Y, Urabe C, Nakamura H, et al. Predicting the characteristics of the aetiological agent for Kawasaki disease from other paediatric infectious diseases in Japan[J]. Epidemiol Infect, 2016, 144(3): 478-492. DOI:10.1017/S0950268815001223 (0)
[26]
Chang LY, Lu CY, Shao PL, et al. Viral infections associated with Kawasaki disease[J]. J Formos Med Assoc, 2014, 113(3): 148-154. DOI:10.1016/j.jfma.2013.12.008 (0)
[27]
Tsai HC, Chang LY, Lu CY, et al. Transmission of acute infectious illness among cases of Kawasaki disease and their household members[J]. J Formos Med Assoc, 2015, 114(1): 72-76. DOI:10.1016/j.jfma.2014.07.005 (0)
[28]
Yen TY, Lin HC, Hsu YL, et al. Possible infectious etiology among Kawasaki disease patients and their families[J]. J Formos Med Assoc, 2017, 116(3): 213. DOI:10.1016/j.jfma.2016.11.007 (0)
[29]
Hara T, Nakashima Y, Sakai Y, et al. Kawasaki disease:a matter of innate immunity[J]. Clin Exp Immunol, 2016, 186(2): 134-143. DOI:10.1111/cei.12832 (0)
[30]
Wang CL, Wu YT, Liu CA, et al. Expression of CD40 ligand on CD4+ T-cells and platelets correlated to the coronary artery lesion and disease progress in Kawasaki disease[J]. Pediatrics, 2003, 111(2): E140-E147. DOI:10.1542/peds.111.2.e140 (0)
[31]
Onouchi Y, Onoue S, Tamari M, et al. CD40 ligand gene and Kawasaki disease[J]. Eur J Hum Genet, 2004, 12(12): 1062-1068. DOI:10.1038/sj.ejhg.5201266 (0)
[32]
Wang Y, Wang W, Gong F, et al. Evaluation of intravenous immunoglobulin resistance and coronary artery lesions in relation to Th1/Th2 cytokine profles in patients with Kawasaki disease[J]. Arthritis Rheum, 2013, 65(3): 805-814. DOI:10.1002/art.37815 (0)
[33]
Shrestha S, Wiener HW, Aissani B, et al. Imputation of class Ⅰ and Ⅱ HLA loci using high-density SNPs from ImmunoChip and their associations with Kawasaki disease in family-based study[J]. Int J Immunogenet, 2015, 42(3): 140-146. DOI:10.1111/iji.2015.42.issue-3 (0)
[34]
Xie X, Shi X, Liu M. The roles of genetic factors in Kawasaki disease:a systematic review and meta-analysis of genetic association studies[J]. Pediatr Cardiol, 2018, 39(2): 207-225. DOI:10.1007/s00246-017-1760-0 (0)
[35]
Kuo HC, Hsu YW, Lo MH, et al. Single-nucleotide polymorphism rs7251246 in ITPKC is associated with susceptibility and coronary artery lesions in Kawasaki disease[J]. PLoS One, 2014, 9(3): e91118. DOI:10.1371/journal.pone.0091118 (0)
[36]
Onouchi Y, Suzuki Y, Suzuki H, et al. ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease[J]. Pharmacogenomics J, 2013, 13(1): 52-59. DOI:10.1038/tpj.2011.45 (0)
[37]
Chang CJ, Kuo HC, Chang JS, et al. Replication and metaanalysis of GWAS identified susceptibility loci in Kawasaki disease confrm the importance of B lymphoid tyrosine kinase (BLK) in disease susceptibility[J]. PLoS One, 2013, 8(8): e72037. DOI:10.1371/journal.pone.0072037 (0)
[38]
程首超, 程衍杨, 吴金龙. CD40基因多态性与川崎病及其冠状动脉损伤的相关性研究[J]. 中国当代儿科杂志, 2014, 16(10): 1025-1028. DOI:10.7499/j.issn.1008-8830.2014.10.013 (0)
[39]
Lin L, Wang SY, Yang SB, et al. Association between the FCGR2A gene H131R polymorphism and risk of Kawasaki disease:a meta-analysis[J]. Genet Mol Res, 2015, 14(2): 6256-6264. DOI:10.4238/2015.June.9.12 (0)
[40]
Kuo HC, Chang JC, Kuo HC, et al. Identification of an association between genomic hypomethylation of FCGR2A and susceptibility to Kawasaki disease and intravenous immunoglobulin resistance by DNA methylation array[J]. Arthritis Rheumatol, 2015, 67(3): 828-836. DOI:10.1002/art.38976 (0)
[41]
Lee YH, Bae SC, Choi SJ, et al. Associations between the functional CD40 rs4810485 G/T polymorphism and susceptibility to rheumatoid arthritis and systemic lupus erythematosus:a meta-analysis[J]. Lupus, 2015, 24(11): 1177-1183. DOI:10.1177/0961203315583543 (0)
[42]
Pamuk ON, Tozkir H, Uyanik MS, et al. PECAM-1 gene polymorphisms and soluble PECAM-1 level in rheumatoid arthritis and systemic lupus erythematosus patients:any link with clinical atherosclerotic events?[J]. Clin Rheumatol, 2014, 33(12): 1737-1743. DOI:10.1007/s10067-014-2771-3 (0)
[43]
Onouchi Y. The genetics of Kawasaki disease[J]. Int J Rheum Dis, 2018, 21(1): 26-30. DOI:10.1111/apl.2018.21.issue-1 (0)
[44]
Onouchi Y, Suzuki Y, Suzuki H, et al. ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease[J]. Pharmacogenomics J, 2013, 13(1): 52-59. DOI:10.1038/tpj.2011.45 (0)
[45]
Labuda LA, de Jong SE, Meurs L, et al. Differences in innate cytokine responses between European and African children[J]. PLoS One, 2014, 9(4): e95241. DOI:10.1371/journal.pone.0095241 (0)
[46]
Kim J, Shimizu C, Kingsmore SF, et al. Whole genome sequencing of an African American family highlights toll like receptor 6 variants in Kawasaki disease susceptibility[J]. PLoS One, 2017, 12(2): e170977. (0)