注意缺陷多动障碍(attention dificit hyperactivity disorder, ADHD)是儿童阶段最常见的神经障碍,且病因复杂,治疗困难,在全球的发病率高达1.4%~3.0%[1-2]。其临床症状往往会随着年龄的增加而减弱,但仍有半数患者的症状会持续到成年期[3]。儿童ADHD也被认为是发展出诸如边缘型人格障碍等精神障碍的一个危险因素[4]。患者常伴有行为问题、学习障碍、药物滥用、焦虑、抑郁,以及婚姻、职业等方面的问题,因此对于ADHD儿童患者,早发现、早干预具有显著的临床及社会意义。
对于学龄期以后的患者,在疾病管理上主要通过药物治疗,辅以行为干预。兴奋性药物具有很高的有效性,该类药物是苯丙胺的衍生物,靶向中枢神经系统多巴胺转运体(dopamine transporter, DAT)和去甲肾上腺素(noradrenaline, NE)转运蛋白[5]。除了兴奋性药物外,NE再摄取抑制剂如托莫西汀,以及α2肾上腺素受体激动剂如胍法辛及可乐定也是常用的ADHD治疗药物[6-7]。
1 ADHD发病所涉及的遗传及环境因素ADHD具有高度遗传性,遗传率大约为40%,全基因组关联分析结果及临床上明显的家族聚集性均表明ADHD是一种多基因疾病。DAT1基因和多巴胺受体(dopamine receptor, DRD)4基因同特定脑区的活性、神经心理学任务表现和对哌甲酯的反应存在相关,被认为是ADHD潜在的生物标志物[8]。
但是近年来全基因组关联分析中单核苷酸多态性(single nucleotide polymorphisms, SNPs)及基因拷贝数变异(copy number variations, CNVs)等研究发现的诸多变异尚不具备特异性,可以一定比例存在于正常人群中,同此前的候选基因关联研究结果类似,均对ADHD的表型变异及遗传力解释有限。然而通过基因本体(Gene Ontology, GO)分析ADHD全基因组关联研究,则发现相关的基因改变多富集于神经发育(GO:0007399),神经元投射形态发生(GO:0048858)及轴突生成(GO:0007409)等方面[9]。鉴于ADHD表型复杂、异质性高,同样的临床表现可基于不同的病理机制,微效多基因的观点认为当诸多散在分布于基因组中的微效基因改变在特定功能分类下富集时可以发挥显著作用。
涉及ADHD的CNVs可影响谷氨酸受体基因(GRM1、GRM5、GRM7、GRM8),PARKIN基因PARK2,尼古丁受体基因CHRNA7等。通过数量性状基因座(quantitative trait loci, QTL)基于家系的全基因组关联研究定位了钙粘素基因CDH13及葡萄糖-果糖氧化还原域基因GFOD1上的变异。近期基于大人群的全基因组关联研究于7p22.3上发现易感位点rs11514810可影响MICALL2、INTS1及PSMG3基因,同时动物研究发现抑制与MICALL2同源的基因表达,能诱发可被托莫西汀缓解的ADHD样症状[10]。上述研究结果拓宽了对ADHD遗传学理解的视角,提示非基因编码区SNPs改变能够影响临近基因的表达,造成相关症状表现。
生命早期应激是促成ADHD样症状的重要环境因素,影响下丘脑-垂体-肾上腺轴(the hypothalamic-pituitary-adrenal axis, HPA轴)的高位调节中枢海马区神经细胞的增殖分化[11]。HPA轴同时是介导压力反应的关键系统,与ADHD密切相关[12]。患者更易于为环境和精神压力所影响,与压力介导的诸多疾病如抑郁、创伤后应激障碍等在发病及症状严重程度等方面存在显著相关,还与童年创伤的严重程度联系密切[3, 13]。
孕期及围产期因素在ADHD的发病中亦占有重要的作用,产前及新生儿时期各种因素造成的缺血缺氧反应通路基因过久表达可提高ADHD的风险[14]。产前应激和糖皮质激素(glucocorticoid, GC)过度暴露增加成年后对神经精神疾病的易感性[15]。同时母亲患抑郁症是ADHD儿童品行障碍严重程度的预测因素。情绪低落易导致GC的分泌增加,可抑制HPA轴功能及诱发胎儿神经系统发育异常,并影响其对压力反应的处理能力[16]。Hiroi等[15]发现雌性更易为产前GC过度暴露所影响,提示ADHD的部分影响机制存在性别二态性。
产前应激和铅暴露还能够对反映冲动水平的延迟折扣实验及启动实验结果造成影响,结果伴随伏核区广泛的单胺类神经递质的变化、边缘系统区五羟色胺(serotonin, 5-HT)功能的降低、前额叶区脑源性神经营养因子(brain derived neurotrophic factor, BDNF)及谷氨酸2A受体的降低,以及5-HT转运体的升高[17]。
此外ADHD患者中癫癎的发病率显著较高,癫癎患者中ADHD的发病率亦显著较高,ADHD药物治疗能够降低患者癫癎发病的风险[18]。动物实验中也发现ADHD症状可以为癫癎常用的生酮疗法所改善[19]。此外癫癎和ADHD患者均存在吡多醛(维生素B6)代谢的异常,使用吡多醛纠正色氨酸代谢异常可改善ADHD行为[20]。
2 ADHD病变涉及的大脑结构和功能异常ADHD患儿存在前额叶皮质发育的滞后,同时前额叶-纹状体及前额叶-杏仁核环路对行为及自我控制的影响也愈加受到重视。背外侧纹状体多巴胺(dopamine, DA)能神经元损伤可造成黑质部DA能神经丢失、纹状体及前额叶皮质部单胺水平降低及短时记忆的障碍[21]。右侧纹状体体积的减少是ADHD的核心特征之一。同时右侧尾状核较左侧体积更大时,额叶到纹状体网络的信息传递存在差速,可造成更显著的注意问题[22]。此外在奖赏任务中患者可见额上回和腹侧纹状体信号升高及腹侧纹状体同运动控制区联系增多,并且腹侧纹状体及运动控制区对奖赏及干扰的神经敏感性增加[23]。
纹状体是DAT1基因表达最高的部位,DAT1 9-6单体型患者的纹状体随年龄缩减的速度较慢[24]。同时药物治疗能够影响右侧尾状核,存在调节纹状体区域基因表达并减缓患者右侧纹状体体积减小的效果[25]。多动及注意力不集中的症状还同胼胝体的多个区域呈负相关,胼胝体异常可导致半球间交流通路受损[26]。
不同亚型ADHD患者的大脑异常存在较大的异质性,ADHD冲动型患者脑白质的异常主要表现在前丘脑的辐射、双边劣下纵束、左侧皮质脊髓束,以及胼胝体辐射线额部、左侧扣带回,而混合型患者的异常主要表现在双侧扣带回[27]。
由于ADHD所涉及的脑区广泛、结构异常多样,探究的视角也从局部异常扩大到网络功能的障碍。其中楔前叶/后扣带皮层、内侧前额叶皮层背侧、前扣带皮层等部位构成的默认模式网络(default mode network, DMN)及其所控制的静息状态愈受重视。DMN脑区间具备高度的功能连接,在静息时处于活跃状态,需要执行任务时则被抑制。目前认为DMN参与巩固记忆、工作记忆、对内外环境信息广泛而基础水平的“监视”、情感-显著刺激过程及情感过程与认知功能的交互等[28]。
ADHD患者DMN节点间的联系相较反应抑制网络(包括下额叶皮质、纹状体及丘脑等)更显著,纹状体背部的壳核与DMN之间的负性连接在ADHD患者中亦减弱。正常人群中认知网络与DMN的激活呈良好的负相关,DMN与腹侧注意网络及认知网络连接的低下同ADHD患者的注意松弛存在关联,哌甲酯能够纠正显著刺激的阈值改变进而在执行任务时降低DMN活性,并提升DMN与前额叶皮质的同步化活动水平,同时托莫西汀能够纠正DMN与认知网络之间的联系。此外ADHD冲动型和混合型患者也在DMN及岛叶区域表现出影像学特征的差异[29-31]。
3 ADHD病变涉及的生化机制异常 3.1 单胺类神经递质在ADHD及其常见的共患病如品行障碍、对立违抗障碍等的发病中,均有肾上腺素、NE、5-HT、DA等单胺类神经递质的参与[32]。其中DA信号通路在记忆和注意方面起重要作用,DA能神经冲动影响奖赏机制及对新奇事物的反应[14]。大脑5-HT能系统在很大程度上介导认知冲动和情绪不稳定性,5-HT能神经传导的改变会造成冲动、攻击及多动行为[33]。ADHD患者楔前叶与海马之间5-HT转运体的表达与健康人群存在显著差异,海马与脑岛部5-HT转运体结合能力亦下降[33]。
5-HT系统活性的增高往往也伴随着DMN活性的降低,急性色氨酸耗竭造成的5-HT水平降低还与低挑衅试验中表现出攻击性,右上前运动区及左侧躯体感觉区同DMN功能连接的异常相关[30]。基因环境交互GxE分析也显示:5-HT转运体的基因S/S型的学龄前儿童ADHD症状最易受到监护人侵扰影响[34]。
此外单胺能及胆碱能刺激调节上丘脑的机制也与ADHD症状相关,上丘整合感受器接受的外界信息并将其传递至杏仁核参与“战斗/逃跑”反应[35]。恐惧相关机制障碍还介导单胺代谢酶COMT基因Val158Met突变与攻击行为之间的联系[36]。
3.2 单胺氧化酶单胺氧化酶A(monoamine oxidase A, MAOA)与攻击、冲动、抑郁及情绪变化、脑区活性及细胞存活、大脑发育及多种神经精神障碍密切相关。小鼠在胚胎期MAOA缺乏可致过量5-HT通过5-htr6细胞信号通路干扰细胞凋亡造成大脑发育延迟[37]。MAOA基因位于X染色体上,在多国人群中发现该基因启动子区串联重复序列多态性同ADHD相关,此外还影响ADHD患者共患品行障碍和对立违抗障碍,以及脑区活性、智力水平、工作记忆等症状表型特点,并且同哌甲酯的疗效相关[32, 38]。
3.3 其他生化机制的改变γ-氨基丁酸(gamma-aminobutyric acid, GABA)是前额叶和纹状体部DA及NE系统的靶点,亦能影响冲动行为[39]。谷氨酸/GABA的平衡影响大脑发育及功能,抑制性GABA的缺失和谷氨酸介导的过度兴奋同孤独症谱系障碍及ADHD相关[40]。抗谷氨酸脱羧酶抗体GAD65能够通过变构调节神经递质,该机制同1型糖尿病相关[41]。近期研究还发现,1型糖尿病显著提升后代患ADHD的风险[42]。
BDNF是参与神经再塑的重要的神经递质调节物,亦能促进维持单胺能神经系统,ADHD冲动型患者与混合型及共患品行障碍的患者在BDNF水平波动方面存在的差异。哌甲酯显著降低冲动亚型患者的BDNF水平并消弭其昼夜波动,但是对混合型及共患品行障碍患者则无此作用[43]。
此外铁状态也影响着能量代谢和神经递质的内稳态,铁缺乏会导致大脑的髓鞘形成不良并影响单胺代谢、GABA/谷氨酸的平衡。铁还是DAβ羟化酶及单胺氧化酶的辅酶,铁状态的异常会导致记忆/学习和运动能力的损害、情绪和心理的问题及ADHD样症状[44]。
4 不同脑区的功能及相关神经递质的紊乱在ADHD发病中的作用虽然目前相关脑区在ADHD发病中的具体作用尚未明确,但在一些ADHD共患病及其他相关疾病的探究中已经对相应脑区的功能及障碍进行过探讨。通过该类研究所揭示的部分脑区的紊乱及后果可以一窥其在ADHD发病中的角色。
过去认为压力状态下生理心理状态改变的主要原因是下丘脑诱导脑垂体及肾上腺素分泌激素增加的作用,如今前额叶在这个过程中的作用越来越受到认识及重视。前额叶与抽象思维、注意力及持续性任务、工作记忆等相关,可以通过纹状体调控日常习惯,通过下丘脑调节食欲等基本欲望,通过杏仁核调控情绪活动,还调控脑干对压力的反应,包括NE能和DA能神经的活动。
压力作用促使脑干神经元释放NE、DA等兴奋性激素,适量的NE、DA通过部分受体强化前额叶神经元间的连接,过量的NE、DA和应激激素则可导致前额叶神经元连接的中断及神经元活性的抑制,削弱前额叶控制情绪和冲动的能力,导致下级脑区接管行为和心理调控。具体而言,在过量DA的作用下,基底神经节(主要为纹状体)可接管对欲望、情绪和运动的反应。在NE、DA和GC等的作用下,杏仁核可以接替前额叶的部分功能,发挥协调神经运动系统应对威胁的作用,并强化与恐惧等情绪相关的记忆[45],同时在压力状态下杏仁核也可导致NE和DA的过量生成。长此以往可造成低级情感中枢神经网络的扩张和逻辑推理相关脑区的萎缩,包括杏仁核神经元树突的增大和前额叶神经元树突的萎缩[46]。此外杏仁核5-HT的耗竭,可以影响阔鼻猴在概率视觉歧视任务中的反应选择和不定时的惩罚敏感性测试中的反应抑制,眶额叶皮质区的5-HT耗竭亦可以影响阔鼻猴的概率辨别学习能力并降低其反应抑制能力[47],提示5-HT在杏仁核及前额叶的水平影响冲动控制及学习能力。
5 小结与展望在ADHD相关的诸多复杂遗传因素的作用下,个体对环境危险因素如压力及其相关的神经内分泌失调等的敏感性增加,造成广泛多样的结构及功能紊乱,脑区间联系的异常使上级脑区失去对大脑功能网络的有效调控,进一步加重神经递质及内分泌紊乱,是ADHD可能的发病机制。鉴于ADHD的异质性大,其病理过程可不尽相同,进一步研究明确多样的遗传因素如何作用于共同通路,导致相似的症状表现,将有利于深入病因学分型及拓宽ADHD的诊疗思维。
[1] |
Thapar A, Cooper M. Attention deficit hyperactivity disorder[J]. Lacent, 2016, 387(10024): 1240-1250. ( ![]() |
[2] |
Sharma A, Couture J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD)[J]. Ann Pharmacother, 2014, 48(2): 209-225. DOI:10.1177/1060028013510699 ( ![]() |
[3] |
Caye A, Spadini AV, Karam RG, et al. Predictors of persistence of ADHD into adulthood:a systematic review of the literature and meta-analysis[J]. Eur Child Adolesc Psychiatry, 2016, 25(11): 1151-1159. DOI:10.1007/s00787-016-0831-8 ( ![]() |
[4] |
Matthies S, Philipsen A. Comorbidity of personality disorders and adult attention deficit hyperactivity disorder (ADHD)-review of recent findings[J]. Curr Psychiatry Rep, 2016, 18(4): 33. DOI:10.1007/s11920-016-0675-4 ( ![]() |
[5] |
Punja S, Shamseer L, Hartling L, et al. Amphetamines for attention deficit hyperactivity disorder (ADHD) in children and adolescents[J]. Cochrane Database Syst Rev, 2016, 2: CD009996. ( ![]() |
[6] |
Chan E, Fogler JM, Hammerness PG. Treatment of attention-deficit/hyperactivity disorder in adolescents:a systematic review[J]. JAMA, 2016, 315(18): 1997-2008. DOI:10.1001/jama.2016.5453 ( ![]() |
[7] |
Kawaura K, Karasawa J, Chaki S, et al. Stimulation of postsynapse adrenergic α2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder[J]. Behav Brain Res, 2014, 270: 349-356. DOI:10.1016/j.bbr.2014.05.044 ( ![]() |
[8] |
Faraone SV, Bonvicini C, Scassellati C. Biomarkers in the diagnosis of ADHD-promising directions[J]. Curr Psychiatry Rep, 2014, 16(11): 497. DOI:10.1007/s11920-014-0497-1 ( ![]() |
[9] |
Hawi Z, Cummins TD, Tong J, et al. The molecular genetic architecture of attention deficit hyperactivity disorder[J]. Mol Psychiatry, 2015, 20(3): 289-297. DOI:10.1038/mp.2014.183 ( ![]() |
[10] |
Yang L, Chang S, Lu Q, et al. A new locus regulating MICALL2 expression was identified for association with executive inhibition in children with attention deficit hyperactivity disorder[J]. Mol Psychiatry, 2018, 23(4): 1014-1020. DOI:10.1038/mp.2017.74 ( ![]() |
[11] |
Bath KG, Manzano-Nieves G, Goodwill H. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice[J]. Horm Behav, 2016, 82: 64-71. DOI:10.1016/j.yhbeh.2016.04.010 ( ![]() |
[12] |
Raz S, Leykin D. Psychological and cortisol reactivity to experimentally induced stress in adults with ADHD[J]. Psychoneuroendocrinology, 2015, 60: 7-17. DOI:10.1016/j.psyneuen.2015.05.008 ( ![]() |
[13] |
Lundervold AJ, Hinshaw SP, Sørensen L, et al. Co-occurring symptoms of attention deficit hyperactivity disorder (ADHD) in a population-based sample of adolescents screened for depression[J]. BMC Psychiatry, 2016, 16: 46. DOI:10.1186/s12888-016-0739-3 ( ![]() |
[14] |
Smith TF, Schmidt-Kastner R, McGeary JE, et al. Pre-and perinatal ischemia-hypoxia, the ischemia-hypoxia response pathway, and ADHD risk[J]. Behav Genet, 2016, 46(3): 467-477. DOI:10.1007/s10519-016-9784-4 ( ![]() |
[15] |
Hiroi R, Carbone DL, Zuloaga DG, et al. Sex-dependent programming effects of prenatal glucocorticoid treatment on the developing serotonin system and stress-related behaviors in adulthood[J]. Neuroscience, 2016, 320: 43-56. DOI:10.1016/j.neuroscience.2016.01.055 ( ![]() |
[16] |
Agha SS, Zammit S, Thapar A, et al. Maternal psychopathology and offspring clinical outcome:a four-year follow-up of boys with ADHD[J]. Eur Child Adolesc Psychiatry, 2017, 26(2): 253-262. DOI:10.1007/s00787-016-0873-y ( ![]() |
[17] |
Weston HI, Weston DD, Allen JL, et al. Sex-dependent impacts of low-level lead exposure and prenatal stress on impulsive choice behavior and associated biochemical and neurochemical manifestations[J]. Neurotoxicology, 2014, 44: 169-183. DOI:10.1016/j.neuro.2014.06.013 ( ![]() |
[18] |
Wiggs KK, Chang Z, Quinn PD, et al. Attention-deficit/hyperactivity disorder medication and seizures[J]. Neurology, 2018, 90(13): e1104-e1110. DOI:10.1212/WNL.0000000000005213 ( ![]() |
[19] |
Packer RM, Law TH, Davies E, et al. Effects of a ketogenic diet on ADHD-like behavior in dogs with idiopathic epilepsy[J]. Epilepsy Behav, 2016, 55: 62-68. DOI:10.1016/j.yebeh.2015.11.014 ( ![]() |
[20] |
Dolina S, Margalit D, Malitsky S, et al. Attention-deficit hyperactivity disorder (ADHD) as a pyridoxine-dependent condition:urinary diagnostic biomarkers[J]. Med Hypotheses, 2014, 82(1): 111-116. DOI:10.1016/j.mehy.2013.11.018 ( ![]() |
[21] |
Matheus FC, Rial D, Real JI, et al. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats[J]. Behav Brain Res, 2016, 301: 43-54. DOI:10.1016/j.bbr.2015.12.011 ( ![]() |
[22] |
Dang LC, Samanez-Larkin GR, Young JS, et al. Caudate asymmetry is related to attentional impulsivity and an objective measure of ADHD-like attentional problems in healthy adults[J]. Brain Struct Funct, 2016, 221(1): 277-286. DOI:10.1007/s00429-014-0906-6 ( ![]() |
[23] |
Ma I, Van Holstein M, Mies GW, et al. Ventral striatal hyperconnectivity during rewarded interference control in adolescents with ADHD[J]. Cortex, 2016, 82: 225-236. DOI:10.1016/j.cortex.2016.05.021 ( ![]() |
[24] |
Onnink AM, Franke B, van Hulzen K, et al. Enlarged striatal volume in adults with ADHD carrying the 9-6 haplotype of the dopamine transporter gene DAT1[J]. J Neural Transm (Vienna), 2016, 123(8): 905-915. DOI:10.1007/s00702-016-1521-x ( ![]() |
[25] |
Van Waes V, Ehrlich S, Beverley JA, et al. Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways:potential role for 5-HT1B receptor[J]. Neuropharmacology, 2015, 89: 77-86. DOI:10.1016/j.neuropharm.2014.08.024 ( ![]() |
[26] |
Luders E, Kurth F, Das D, et al. Associations between corpus callosum size and ADHD symptoms in older adults:The PATH through life study[J]. Psychiatry Res Neuroimaging, 2016, 256: 8-14. DOI:10.1016/j.pscychresns.2016.08.009 ( ![]() |
[27] |
Svatkova A, Nestrasil I, Rudser K, et al. Unique white matter microstructural patterns in ADHD presentations-a diffusion tensor imaging study[J]. Hum Brain Mapp, 2016, 37(9): 3323-3336. DOI:10.1002/hbm.v37.9 ( ![]() |
[28] |
Mohan A, Roberto AJ, Mohan A, et al. The significance of the default mode network (DMN) in neurological and neuropsychiatric disorders:a review[J]. Yale J Biol Med, 2016, 89(1): 49-57. ( ![]() |
[29] |
McCarthy H, Skokauskas N, Frodl T. Attention network hypoconnectivity in adults diagnosed as having attention-deficit/hyperactivity disorder in childhood[J]. JAMA Psychiatry, 2014, 71(11): 1299-1300. ( ![]() |
[30] |
Biskup CS, Helmbold K, Baurmann D, et al. Resting state default mode network connectivity in children and adolescents with ADHD after acute tryptophan depletion[J]. Acta Psychiatr Scand, 2016, 134(2): 161-171. DOI:10.1111/acps.2016.134.issue-2 ( ![]() |
[31] |
Sun H, Chen Y, Huang Q, et al. Psychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder:a radiomics analysis[J]. Radiology, 2018, 287(2): 620-630. DOI:10.1148/radiol.2017170226 ( ![]() |
[32] |
Karmakar A, Maitra S, Verma D, et al. Potential contribution of monoamine oxidase a gene variants in ADHD and behavioral co-morbidities:scenario in eastern Indian probands[J]. Neurochem Res, 2014, 39(5): 843-852. DOI:10.1007/s11064-014-1276-4 ( ![]() |
[33] |
Vanicek T, Kutzelnigg A, Philippe C, et al. Altered interregional molecular associations of the serotonin transporter in attention deficit/hyperactivity disorder assessed with PET[J]. Hum Brain Mapp, 2017, 38(2): 792-802. DOI:10.1002/hbm.23418 ( ![]() |
[34] |
Baptista J, Belsky J, Mesquita A, et al. Serotonin transporter polymorphism moderates the effects of caregiver intrusiveness on ADHD symptoms among institutionalized preschoolers[J]. Eur Child Adolesc Psychiatry, 2017, 26(3): 303-313. DOI:10.1007/s00787-016-0890-x ( ![]() |
[35] |
Bezdudnaya T, Castro-Alamancos MA. Neuromodulation of whisking related neural activity in superior colliculus[J]. J Neurosci, 2014, 34(22): 7683-7695. DOI:10.1523/JNEUROSCI.0444-14.2014 ( ![]() |
[36] |
Van Goozen SH, Langley K, Northover C, et al. Identifying mechanisms that underlie links between COMT genotype and aggression in male adolescents with ADHD[J]. J Child Psychol Psychiatry, 2016, 57(4): 472-480. DOI:10.1111/jcpp.2016.57.issue-4 ( ![]() |
[37] |
Wang CC, Man GC, Chu CY, et al. Serotonin receptor 6 mediates defective brain development in monoamine oxidase A-deficient mouse embryos[J]. J Biol Chem, 2014, 289(12): 8252-8263. DOI:10.1074/jbc.M113.522094 ( ![]() |
[38] |
Ko CH, Hsieh TJ, Wang PW, et al. The altered brain activation of phonological working memory, dual tasking, and distraction among participants with adult ADHD and the effect of the MAOA polymorphism[J]. J Atten Disord, 2018, 22(3): 240-249. DOI:10.1177/1087054715572609 ( ![]() |
[39] |
Hayes DJ, Jupp B, Sawiak SJ, et al. Brain γ-aminobutyric acid:a neglected role in impulsivity[J]. Eur J Neurosci, 2014, 39(11): 1921-1932. DOI:10.1111/ejn.12485 ( ![]() |
[40] |
Purkayastha P, Malapati A, Yogeeswari P, et al. A review on GABA/glutamate pathway for therapeutic intervention of ASD and ADHD[J]. Curr Med Chem, 2015, 22(15): 1850-1859. DOI:10.2174/0929867322666150209152712 ( ![]() |
[41] |
Kass I, Hoke DE, Costa MG, et al. Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis[J]. Proc Natl Acad Sci U S A, 2014, 111(25): E2524-E2529. DOI:10.1073/pnas.1403182111 ( ![]() |
[42] |
Ji J, Chen T, Sundquist J, et al. Type 1 diabetes in parents and risk of attention deficit/hyperactivity disorder in offspring:a population-based study in Sweden[J]. Diabetes Care, 2018, 41(4): 770-774. DOI:10.2337/dc17-0592 ( ![]() |
[43] |
Cubero-Millán I, Ruiz-Ramos MJ, Molina-Carballo A, et al. BDNF concentrations and daily fluctuations differ among ADHD children and respond differently to methylphenidate with no relationship with depressive symptomatology[J]. Psychopharmacology (Berl), 2017, 234(2): 267-279. DOI:10.1007/s00213-016-4460-1 ( ![]() |
[44] |
Kim J, Wessling-Resnick M. Iron and mechanisms of emotional behavior[J]. J Nutr Biochem, 2014, 25(11): 1101-1107. DOI:10.1016/j.jnutbio.2014.07.003 ( ![]() |
[45] |
Roozendaal B, Luyten L, de Voogd LD, et al. Importance of amygdala noradrenergic activity and large-scale neural networks in regulating emotional arousal effects on perception and memory[J]. Behav Brain Sci, 2016, 39: e222. DOI:10.1017/S0140525X15001934 ( ![]() |
[46] |
Arnsten AF. Stress weakens prefrontal networks:molecular insults to higher cognition[J]. Nat Neurosci, 2015, 18(10): 1376-1385. DOI:10.1038/nn.4087 ( ![]() |
[47] |
Rygula R, Clarke HF, Cardinal RN, et al. Role of central serotonin in anticipation of rewarding and punishing outcomes:effects of selective amygdala or orbitofrontal 5-HT depletion[J]. Cereb Cortex, 2015, 25(9): 3064-3076. DOI:10.1093/cercor/bhu102 ( ![]() |