中国当代儿科杂志  2019, Vol. 21 Issue (4): 399-404  DOI: 10.7499/j.issn.1008-8830.2019.04.018

引用本文  

文泳欣, 王佳平, 陈岩, 等. 阵发性哭闹伴运动倒退2月余[J]. 中国当代儿科杂志, 2019, 21(4): 399-404.
WEN Yong-Xin, WANG Jia-Ping, CHEN Yan, et al. Paroxysmal crying and motor regression for more than two months in an infant[J]. Chinese Journal of Contemporary Pediatrics, 2019, 21(4): 399-404.

作者简介

文泳欣, 女, 硕士研究生

通信作者

包新华, 女, 主任医师, 教授。Email:zwhang@pku.edu.cn

文章历史

收稿日期:2018-12-13
接受日期:2019-02-13
阵发性哭闹伴运动倒退2月余
文泳欣 , 王佳平 , 陈岩 , 包新华     
北京大学第一医院儿科, 北京 100034
摘要:患儿,男,4.5月龄发病,表现为易激惹、运动倒退、角弓反张样姿势。头颅MRI示双侧豆状核、丘脑、中脑、小脑半球对称性异常信号。基因检测发现患儿SLC19A3基因存在复合杂合突变:c.950G > A(p.G317E)和c.962C > T(p.A321V),前者遗传自父亲,后者遗传自母亲。生物信息学分析提示两者均为有害突变。予生物素、硫胺素和"鸡尾酒疗法"治疗后病情好转,1月后头颅MRI示病变显著改善。该患儿最终确诊为生物素-硫胺素反应性基底节病(BTBGD)。BTBGD是一种可治性的常染色体隐性遗传性疾病,早期应用硫胺素、生物素治疗可获得满意的疗效。
关键词生物素-硫胺素反应性基底节病    SLC19A3基因    硫胺素转运体    婴儿    
Paroxysmal crying and motor regression for more than two months in an infant
WEN Yong-Xin , WANG Jia-Ping , CHEN Yan , BAO Xin-Hua     
Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
Abstract: The patient was a male who was found to be abnormal at the age of 4.5 months. He presented with irritability, motor regression and opisthotonus. Brain MRI revealed bilateral abnormality in the lentiform nucleus, thalamus, deutocerebrum and cerebellar hemispheres. Novel compound heterozygous mutations of SLC19A3 gene, c.950G > A(p.G317E) and c.962C > T(p.A321V), were found in the patient. Further study showed that c.950G > A was inherited from his father and c.962C > T came from his mother. Using bioinformatics software analysis, both of the mutations were found to be harmful. His symptoms were improved remarkably after biotin, thiamine and "cocktail" therapy. One month later a brain MRI revealed that the lesions in basal ganglia and cerebellar hemispheres were improved. The patient was definitely diagnosed with biotin-thiamine responsive basal ganglia disease (BTBGD). BTBGD is a treatable autosomal recessive disease and early administration of biotin and thiamine may lead to clinical improvement.
Key words: Biotin-thiamine responsive basal ganglia disease    SLC19A3 gene    Thiamine transporter    Infant    
1 病例介绍

患儿,男,6个月26 d,因阵发性哭闹伴运动倒退2月余于2017年12月11日入院。4.5月龄时无诱因出现阵发性哭闹,初可安抚,按“肠痉挛”处理后好转2~3 d,继之哭闹增多,精神差,肢体运动减少。6月龄时,患儿整天哭闹,伴姿势异常,表现为头后仰、双手后伸,似角弓反张样,不易安抚,并出现眼神呆滞,不喜笑,竖头不稳,不能翻身,四肢活动少。当地完善头颅MRI(淄博市中西医结合医院,2017年11月8日)示双侧豆状核、丘脑、中脑、小脑半球、皮层下白质对称性长T1长T2信号,T2 Flair高信号(图 1A)。2017年11月13日于我科门诊就诊,考虑Leigh综合征及生物素-硫胺素反应性基底节病(biotin-thiamine responsive basal ganglia disease, BTBGD),嘱口服硫胺素10 mg/(kg·d)、生物素1 mg/(kg·d)及“鸡尾酒疗法”(辅酶Q10、左卡尼汀、多种维生素等),建议完善基因检测。服药后患儿精神好转,为进一步诊治收入我科。


图 1 生物素-硫胺素反应性基底节病患儿头颅MRI A:6月龄时双侧豆状核(红色箭头)、丘脑内侧(黄色箭头)、中脑(绿色箭头)、小脑半球(白色箭头)、皮层下白质(蓝色箭头)对称性的T2WI高信号;B:7月龄时原病灶较前明显减少,双侧壳核(红色箭头)、小脑半球(白色箭头)T2WI信号略增高;C:1岁时双侧壳核(红色箭头)、小脑半球(白色箭头)病变较7月龄时未见明显变化。

患儿系第1胎第1产,足月顺产,出生时无窒息史,出生体重3.85 kg,新生儿期无病理性黄疸。早期发育基本正常:3月龄抬头,4月龄翻身。既往体健,已接种卡介苗、乙肝疫苗、百日咳疫苗、脊髓灰质炎疫苗。父母体健,非近亲婚配,家族中无遗传疾病史。

入院查体:体重10.2 kg(+1.4 SD),身高76 cm(+2.5 SD),生命体征平稳,易激惹,皮肤毛发无异常,心肺腹无异常。头围44 cm,颅神经无异常,四肢肌力V级,肌张力阵发性增高,腱反射对称引出,踝阵挛阴性,病理征(-),脑膜刺激征(-)。

辅助检查:血乳酸、血氨、肝肾功能、心肌酶正常。脑脊液常规和生化正常。血遗传代谢病氨基酸和酰基肉碱谱分析及尿有机酸分析未见异常。腹部彩超示肝、脾轻度肿大,肠胀气。视频脑电图示双侧枕、颞区不对称,左侧θ活动、尖形慢波发放。Gesell发育量表示适应性、大运动、精细运动、个人社交评价为轻度落后,语言为边缘状态。

2 诊断思维

6个月26 d男性患儿,以阵发性哭闹伴运动倒退就诊,起病前无明显诱发因素,表现为易激惹、精神反应差、运动倒退及角弓反张样锥体外系受累等亚急性脑病症状。发病初期头颅MRI示双侧豆状核、中脑、小脑对称性异常信号灶。结合患儿的临床表现及影像学特点初步怀疑Leigh综合征及BTBGD,即予生物素、硫胺素及“鸡尾酒疗法”治疗。药物治疗20多天后,患儿精神状态好转。Leigh综合征除了典型的影像学改变外,常伴有血、脑脊液乳酸及丙酮酸水平的升高,而本例患儿血乳酸、血遗传代谢病氨基酸和酰基肉碱谱分析、尿有机酸分析、脑脊液常规和生化等均未发现异常。故考虑患儿为BTBGD可能性大,但Leigh综合征发作间期血液及脑脊液生化检查可正常,故不能完全排除Leigh综合征。因此建议进一步行全外显子组测序协助诊断,若全外显子组测序阴性,可完善线粒体核基因检测排除线粒体脑病。由于SLC19A3基因调控序列突变也可致病,故仍无法明确致病突变时可考虑全基因组测序寻找病因。

BTBGD对生物素、硫胺素治疗反应好,及时治疗后颅内病变可减轻甚至消失,而Leigh综合征对生物素、硫胺素治疗无反应。需经生物素、硫胺素治疗后定期复查头颅MRI观察颅内病变情况也有助诊断。

3 进一步检查

签署知情同意后,抽取患儿及其家长外周静脉血各2 mL,提取基因组DNA,采用高通量测序仪(Illumina Nextseq500)进行全外显子组测序,并进一步行Sanger测序验证。结果显示患儿SLC19A3基因存在复合杂合变异,分别为c.950G > A(p.G317E)和c.962C > T(p.A321V),前者遗传自父亲,后者遗传自母亲(图 2)。外显子组整合(Exome Aggregation Consortium, ExAC)数据库、千人基因组及dbSNP数据库均未见报道。应用SIFT、PolyPhen-2、Mutation Taster对这两个位点变异进行致病性预测,均为有害突变。


图 2 患儿及其父母SLC19A3基因Sanger测序图 患儿SLC19A3基因存在c.950G>A(红色箭头)和c.962C>T(绿色箭头)复合杂合突变,其父母分别为c.950G>A和c.962C>T变异的携带者。突变位点如箭头所示。

入院5 d后(硫胺素、生物素治疗1月后),复查头颅MRI(7月龄)示病变显著改善,双侧壳核、小脑半球T2WI信号略增高(图 1B),双侧额部少量硬膜下积液。

4 诊断及确诊依据

诊断:生物素-硫胺素反应性基底节病(BTBGD)。依据:(1)亚急性起病,起病初期表现为易激惹、精神反应差、运动倒退及角弓反张样锥体外系受累症状;(2)起病初期头颅MRI(6月龄)有特异性表现:双侧豆状核、中脑、小脑半球、皮层下白质对称性异常信号灶,尤其是双侧丘脑内侧对称性病变;(3)对硫胺素、生物素治疗反应好;(4)SLC19A3基因存在2个复合杂合突变。

5 临床经过

入院后继续予口服大剂量硫胺素30 mg/(kg·d)、生物素1 mg/(kg·d)及“鸡尾酒疗法”治疗,复查头颅MRI提示病变明显改善(图 1B)。入院9 d后,患儿精神明显好转,哭闹渐减少,眼神较前灵活,笑容、四肢活动增多,竖头稳,翻身可,异常姿势消失,予出院。

2018年6月(1岁12 d)复查头颅MRI未见新病变,双侧壳核、小脑半球病变较7月龄时无明显变化(图 1C)。头围46 cm,无异常姿势,可独坐,尚不稳,能独站,尚不能独走,有“baba”的发音。嘱其继续口服硫胺素和生物素治疗,并进行康复训练。2018年10月(1岁5月)行电话随访,患儿行康复训练后进步明显:精神反应可,独坐稳,会匍匐爬行,扶着栏杆能快速行走,有“baba”、“mama”的发音,但主动发音少。嘱其继续目前治疗并定期复查头颅MRI观察颅内病变情况。

6 讨论

BTBGD也称为硫胺素代谢障碍综合征2(thiamine metabolism dysfunction syndrome-2, THMD2),是一种少见的常染色体隐性遗传的神经代谢障碍性疾病,由Ozand等人于1998年首次报道[1]。BTBGD发病率不详,Ferreira等人[2]曾根据美国人群全基因组测序数据推算BTBGD的发病率为1/215 000,按此发病率估算我国约有6 500名患者。迄今为止,国内仅1例BTBGD女婴的报道[3],生后35 d起病,以易激惹、阵发性哭闹为首发症状。至2018年12月,国外共报道151例BTBGD患者[1-2, 4-41](男性79例,女性72例),发病年龄为18日龄~15岁,平均发病年龄为7岁。BTBGD可发生在各个种族,以沙特阿拉伯人居多,占已报道病例的54%(82/152)。既往文献指出,BTBGD患者父母近亲婚配的发生率高达50%[7]

2005年,Zeng等[42]首次揭示SLC19A3为该病的致病基因。SLC19A3定位于2q36.3,编码硫胺素转运体2(thiamine transporter 2, THTR2)。在中东患者中,SLC19A3基因c.1264A > G(p.T422A)为最常见的致病突变。在已报道的病例中,SLC19A3的错义突变、无义突变、缺失、重复均可导致BTBGD的发生,以错义突变最为多见。本文报道的SLC19A3基因复合杂合突变是既往文献未报道的突变位点,拓展了SLC19A3基因突变谱。此外,SLC19A3调控区突变也可导致此病的发生[16, 37],故在临床上高度怀疑BTBGD而全外显子组测序或包含SLC19A3基因的靶向测序未发现可疑致病突变时,应考虑SLC19A3全基因组测序进行确诊。

硫胺素是生物体内多种生化反应的重要辅助因子,主要参与能量代谢及核酸、脂质、抗氧化物和神经递质的合成。硫胺素由THTR1(由SLC19A2基因编码)或THTR2转运进入胞质[43],并通过硫胺素焦磷酸激酶1(thiamine pyrophosphokinase 1, TPK1)转化为有活性的硫氨素焦磷酸(thiamine pyrophosphate, TPP)。TPP是细胞质中转酮醇酶的辅助因子,参与磷酸戊糖途径。此外,TPP由线粒体硫胺素焦磷酸载体(由SLC25A19基因编码)转运至线粒体,在线粒体中TPP作为以下3种酶复合物的辅助因子,在能量代谢等生物反应中发挥重要作用[44]:(1)丙酮酸脱氢酶,参与三羧酸循环;(2)α-酮戊二酸脱氢酶,参与三羧酸循环;(3)支链α-酮酸脱氢酶,参与3种支链氨基酸(亮氨酸、异亮氨酸和缬氨酸)的分解代谢。因此,SLC19A2、SLC19A3和SLC25A19基因突变,可导致相应的硫胺素转运载体功能异常,都会引起体内硫胺素代谢障碍(图 3)。


图 3 硫胺素代谢通路 硫胺素主要通过THTR1或THTR2转运至细胞质,经TPK1转化为TPP,TPP通过线粒体TPP转运体进入线粒体。[THTR1]硫胺素转运体1;[THTR2]硫胺素转运体2;[TPK1]硫胺素焦磷酸激酶1;[TPP]硫胺素焦磷酸。

根据临床表现及发病年龄的不同,将BTBGD分为3型[45]:(1)儿童起病的BTBGD:为最常见的表型,平均发病年龄为7岁,接近半数的病例发病年龄在3~7岁。常以亚急性脑病起病,表现为精神反应差、易激惹、构音障碍、吞咽困难,可伴有核上性面神经瘫痪及眼外肌麻痹症,如不及时治疗,病情可发展为严重的齿轮样强直、肌张力障碍、癫痫、四肢瘫痪,甚至死亡。急性期头颅MRI表现为基底节(尾状核和壳核)、小脑、皮层、皮层下白质水肿。(2)婴儿早期起病的Leigh样综合征或不典型的婴儿痉挛:①Leigh样综合征:通常在生后3个月内起病,表现为喂养困难、呕吐、急性脑病及严重的乳酸酸中毒。头颅MRI可见Rolandic区周围、双侧壳核及丘脑内侧核信号异常,MRS可见乳酸峰。此型患者大部分对生物素、硫胺素治疗不敏感,早期死亡;②不典型婴儿痉挛:此型患者常于生后1~2个月出现神经系统症状如易激惹、角弓反张,并于2~11个月出现不典型婴儿痉挛表现,脑电图常为多灶性棘波,但无高度失律,此型预后差。(3)成年起病的Wernicke's样脑病:此型仅见2例日本男性报道,发病年龄在10~20岁,表现为癫痫持续状态、复视、眼球震颤、上睑下垂、眼肌麻痹及共济失调,头颅MRI示双侧丘脑内侧及导水管周围灰质异常信号。此型患者对大剂量的硫胺素治疗反应好。

BTBGD是一种可治性神经代谢性疾病,大部分患者对硫胺素、生物素治疗反应好。硫胺素的跨膜转运方式有主动转运和被动扩散两种。当浓度低于2 mmol/L时,硫胺素的跨膜运输依赖于主动转运,即需要载体进行跨膜运输。而硫胺素浓度足够高时,可通过被动扩散方式进行转运[13]。因此,大剂量补充硫胺素可提高其被动扩散的效率,以代偿THTR2的功能缺陷。生物素对本病的治疗作用尚不明确,有文献报道给予适量生物素治疗能够缓解临床症状,其可能的机制:一方面生物素是多种线粒体能量代谢所需酶复合物(包括丙酰辅酶A、丙酮酸羧化酶和3-甲基巴豆酰辅酶A羧化酶)的辅助因子[45],大剂量的生物素可激活这些酶复合物的活性,从而在一定程度上代偿硫胺素缺乏所导致的能量代谢紊乱。另一方面,组蛋白的生物素酰化修饰可以调节SLC19A3基因的表达,已有研究表明SLC19A3基因表达依赖于生物素的水平,大剂量生物素可能会上调SLC19A3基因的表达,通过提高产物的表达来增强其保留的部分功能[7, 44, 46]。总之,大剂量硫胺素是BTBGD治疗的关键,生物素可能对病情的缓解有一定的作用。推荐剂量为硫胺素10~40 mg/(kg·d),生物素1~10 mg/(kg·d)[45],患者需终生用药,但在病情稳定后,硫胺素及生物素的剂量可酌情减低。

7 结语

BTBGD是一种可治性遗传性疾病,早期发现、及时给予特异性治疗,患者有望获得较好预后。目前国内发现的两例BTBGD患者发病年龄均较早,以易激惹、阵发性哭闹为首发症状,发病后病情进行性加重,予硫胺素、生物素治疗后病情明显好转。因此,临床工作中若高度怀疑患者为BTBGD时,应及早给予硫胺素、生物素治疗,同时进行相关基因检测以明确诊断。

参考文献
[1]
Ozand PT, Gascon GG, Al Essa M, et al. Biotin-responsive basal ganglia disease:a novel entity[J]. Brain, 1998, 121(Pt 7): 1267-1279. (0)
[2]
Ferreira CR, Whitehead MT, Leon E. Biotin-thiamine responsive basal ganglia disease:identification of a pyruvate peak on brain spectroscopy, novel mutation in SLC19A3, and calculation of prevalence based on allele frequencies from aggregated nextgeneration sequencing data[J]. Am J Med Genet A, 2017, 173(6): 1502-1513. DOI:10.1002/ajmg.a.38189 (0)
[3]
张培元, 刘晓军, 张玉琴. 小婴儿生物素-硫胺素反应性基底节病一例[J]. 中华儿科杂志, 2018, 56(6): 462-464. DOI:10.3760/cma.j.issn.0578-1310.2018.06.012 (0)
[4]
Adhisivam B, Mahto D, Mahadevan S. Biotin responsive limb weakness[J]. Indian Pediatr, 2007, 44(3): 228-230. (0)
[5]
Alfadhel M, Almuntashri M, Jadah RH, et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamineresponsive basal ganglia disease:a retrospective review of the clinical, radiological and molecular findings of 18 new cases[J]. Orphanet J Rare Dis, 2013, 8: 83. DOI:10.1186/1750-1172-8-83 (0)
[6]
Bindu PS, Noone ML, Nalini A, et al. Biotin-responsive basal ganglia disease:a treatable and reversible neurological disorder of childhood[J]. J Child Neurol, 2009, 24(6): 750-752. DOI:10.1177/0883073808329525 (0)
[7]
Algahtani H, Ghamdi S, Shirah B, et al. Biotin-thiamineresponsive basal ganglia disease:catastrophic consequences of delay in diagnosis and treatment[J]. Neurol Res, 2017, 39(2): 117-125. DOI:10.1080/01616412.2016.1263176 (0)
[8]
Aljabri MF, Kamal NM, Arif M, et al. A case report of biotinthiamine-responsive basal ganglia disease in a Saudi child:is extended genetic family study recommended?[J]. Medicine (Baltimore), 2016, 95(40): e4819. DOI:10.1097/MD.0000000000004819 (0)
[9]
Bin Saeedan M, Dogar MA. Teaching neuroimages:MRI findings of biotin-responsive basal ganglia disease before and after treatment[J]. Neurology, 2016, 86(7): e71-e72. DOI:10.1212/WNL.0000000000002372 (0)
[10]
Bubshait DK, Rashid A, Al-Owain MA, et al. Depression in adult patients with biotin responsive basal ganglia disease[J]. Drug Discov Ther, 2016, 10(4): 223-225. DOI:10.5582/ddt.2016.01046 (0)
[11]
Debs R, Depienne C, Rastetter A, et al. Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations[J]. Arch Neurol, 2010, 67(1): 126-130. (0)
[12]
Distelmaier F, Huppke P, Pieperhoff P, et al. Biotin-responsive basal ganglia disease:a treatable differential diagnosis of Leigh syndrome[J]. JIMD Rep, 2014, 13: 53-57. (0)
[13]
Eichler FS, Swoboda KJ, Hunt AL, et al. Case 38-2017. A 20-year-old woman with seizures and progressive dystonia[J]. N Engl J Med, 2017, 377(24): 2376-2385. DOI:10.1056/NEJMcpc1706109 (0)
[14]
El-Hajj TI, Karam PE, Mikati MA. Biotin-responsive basal ganglia disease:case report and review of the literature[J]. Neuropediatrics, 2008, 39(5): 268-271. DOI:10.1055/s-0028-1128152 (0)
[15]
Fassone E, Wedatilake Y, DeVile CJ, et al. Treatable Leigh-like encephalopathy presenting in adolescence[J]. BMJ Case Rep, 2013, 2013: 200838. (0)
[16]
Flønes I, Sztromwasser P, Haugarvoll K, et al. Novel SLC19A3 promoter deletion and allelic silencing in viotin-thiamineresponsive basal ganglia encephalopathy[J]. PLoS One, 2016, 11(2): e0149055. DOI:10.1371/journal.pone.0149055 (0)
[17]
Kassem H, Wafaie A, Alsuhibani S, et al. Biotin-responsive basal ganglia disease:neuroimaging features before and after treatment[J]. AJNR Am J Neuroradiol, 2014, 35(10): 1990-1995. DOI:10.3174/ajnr.A3966 (0)
[18]
Schänzer A, Döring B, Ondrouschek M, et al. Stress-induced upregulation of SLC19A3 is impaired in biotin-thiamineresponsive basal ganglia disease[J]. Brain Pathol, 2014, 24(3): 270-279. DOI:10.1111/bpa.12117 (0)
[19]
Serrano M, Rebollo M, Depienne C, et al. Reversible generalized dystonia and encephalopathy from thiamine transporter 2 deficiency[J]. Mov Disord, 2012, 27(10): 1295-1298. DOI:10.1002/mds.25008 (0)
[20]
Tabarki B, Al-Shafi S, Al-Shahwan S, et al. Biotin-responsive basal ganglia disease revisited:clinical, radiologic, and genetic findings[J]. Neurology, 2013, 80(3): 261-267. (0)
[21]
Alfadhel M, Al-Bluwi A. Psychological assessment of patients with biotin-thiamine-responsive basal ganglia disease[J]. Child Neurol Open, 2017, 4: 2329048X. (0)
[22]
Gerards M, Kamps R, van Oevelen J, et al. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome[J]. Brain, 2013, 136(Pt 3): 882-890. (0)
[23]
Gowda VK, Srinivasan VM, Bhat M, et al. Biotin thiamin responsive basal ganglia disease in siblings[J]. Indian J Pediatr, 2018, 85(2): 155-157. DOI:10.1007/s12098-017-2471-5 (0)
[24]
Haack TB, Klee D, Strom TM, et al. Infantile Leigh-like syndrome caused by SLC19A3 mutations is a treatable disease[J]. Brain, 2014, 137(Pt 9): e296. (0)
[25]
Kevelam SH, Bugiani M, Salomons GS, et al. Exome sequencing reveals mutated SLC19A3 in patients with an earlyinfantile, lethal encephalopathy[J]. Brain, 2013, 136(Pt 5): 1534-1543. (0)
[26]
Kohrogi K, Imagawa E, Muto Y, et al. Biotin-responsive basal ganglia disease:a case diagnosed by whole exome sequencing[J]. J Hum Genet, 2015, 60(7): 381-385. DOI:10.1038/jhg.2015.35 (0)
[27]
Kono S, Miyajima H, Yoshida K, et al. Mutations in a thiaminetransporter gene and Wernicke's-like encephalopathy[J]. N Engl J Med, 2009, 360(17): 1792-1794. DOI:10.1056/NEJMc0809100 (0)
[28]
Muthusamy K, Ekbote AV, Thomas MM, et al. Biotin thiamine responsive basal ganglia disease-a potentially treatable inborn error of metabolism[J]. Neurol India, 2016, 64(6): 1328-1331. DOI:10.4103/0028-3886.193797 (0)
[29]
Ortigoza-Escobar JD, Serrano M, Molero M, et al. Thiamine transporter-2 deficiency:outcome and treatment monitoring[J]. Orphanet J Rare Dis, 2014, 9: 92. DOI:10.1186/1750-1172-9-92 (0)
[30]
Pérez-Dueñas B, Serrano M, Rebollo M, et al. Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency[J]. Pediatrics, 2013, 131(5): e1670-e1675. DOI:10.1542/peds.2012-2988 (0)
[31]
Pronicka E, Piekutowska-Abramczuk D, Ciara E, et al. New perspective in diagnostics of mitochondrial disorders:two years' experience with whole-exome sequencing at a national paediatric centre[J]. J Transl Med, 2016, 14(1): 174. DOI:10.1186/s12967-016-0930-9 (0)
[32]
Pronicki M, Piekutowska-Abramczuk D, Jurkiewicz E, et al. Neuropathological characteristics of the brain in two patients with SLC19A3 mutations related to the biotin-thiamineresponsive basal ganglia disease[J]. Folia Neuropathol, 2017, 55(2): 146-153. (0)
[33]
Schwarting J, Lakshmanan R, Davagnanam I. Teaching neuroimages:biotin-responsive basal ganglia disease[J]. Neurology, 2016, 86(17): e184-e185. DOI:10.1212/WNL.0000000000002616 (0)
[34]
Sremba LJ, Chang RC, Elbalalesy NM, et al. Whole exome sequencing reveals compound heterozygous mutations in SLC19A3 causing biotin-thiamine responsive basal ganglia disease[J]. Mol Genet Metab Rep, 2014, 1: 368-372. DOI:10.1016/j.ymgmr.2014.07.008 (0)
[35]
Tabarki B, Alfadhel M, AlShahwan S, et al. Treatment of biotinresponsive basal ganglia disease:open comparative study between the combination of biotin plus thiamine versus thiamine alone[J]. Eur J Paediatr Neurol, 2015, 19(5): 547-552. DOI:10.1016/j.ejpn.2015.05.008 (0)
[36]
Tonduti D, Invernizzi F, Panteghini C, et al. SLC19A3 related disorder:treatment implication and clinical outcome of 2 new patients[J]. Eur J Paediatr Neurol, 2018, 22(2): 332-335. (0)
[37]
Whitford W, Hawkins I, Glamuzina E, et al. Compound heterozygous SLC19A3 mutations further refine the critical promoter region for biotin-thiamine-responsive basal ganglia disease[J]. Cold Spring Harb Mol Case Stud, 2017, 3(6): pii:a001909. DOI:10.1101/mcs.a001909 (0)
[38]
Yamada K, Miura K, Hara K, et al. A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations[J]. BMC Med Genet, 2010, 11: 171. DOI:10.1186/1471-2350-11-171 (0)
[39]
Ygberg S, Naess K, Eriksson M, et al. Biotin and thiamine responsive basal ganglia disease-a vital differential diagnosis in infants with severe encephalopathy[J]. Eur J Paediatr Neurol, 2016, 20(3): 457-461. (0)
[40]
Kamasak T, Havalı C, İnce H, et al. Are diagnostic magnetic resonance patterns life-saving in children with biotin-thiamineresponsive basal ganglia disease?[J]. Eur J Paediatr Neurol, 2018, 22(6): 1139-1149. DOI:10.1016/j.ejpn.2018.06.009 (0)
[41]
Mir A, Alhazmi R, Albaradie R. Biotin-thiamine-responsive basal ganglia disease-a treatable metabolic disorder[J]. Pediatr Neurol, 2018, 87: 80-81. DOI:10.1016/j.pediatrneurol.2018.06.006 (0)
[42]
Zeng WQ, Al-Yamani E, Acierno JS Jr, et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3[J]. Am J Hum Genet, 2005, 77(1): 16-26. DOI:10.1086/431216 (0)
[43]
Ganapathy V, Smith SB, Prasad PD. SLC19:the folate/thiamine transporter family[J]. Pflugers Arch, 2004, 447(5): 641-646. DOI:10.1007/s00424-003-1068-1 (0)
[44]
Brown G. Defects of thiamine transport and metabolism[J]. J Inherit Metab Dis, 2014, 37(4): 577-585. DOI:10.1007/s10545-014-9712-9 (0)
[45]
Alfadhel M, Tabarki B. SLC19A3 gene defects sorting the phenotype and acronyms:review[J]. Neuropediatrics, 2018, 49(2): 83-92. DOI:10.1055/s-0037-1607191 (0)
[46]
Rodriguez-Melendez R, Zempleni J. Regulation of gene expression by biotin (review)[J]. J Nutr Biochem, 2003, 14(12): 680-690. DOI:10.1016/j.jnutbio.2003.07.001 (0)