先天性肌无力综合征(congenital myasthenic syndromes, CMS)是一大组由于基因缺陷影响神经肌肉接头形成、维持与功能的罕见遗传性疾病。因发病率低,临床表现异质性大,临床很容易被漏诊和误诊。但总体而言,CMS是一组早期诊断和针对性治疗可以明显改善预后的遗传性疾病,系统学习、了解该病的临床特点,对于这类患者能得到及时有效的治疗相当重要。
神经肌肉接头依赖突触前膜、突触间隙和突触后膜的众多蛋白相互协调来共同完成信号传递,所以相关编码基因出现的影响功能的致病突变,都可能导致CMS[1]。目前,已报道30余个可导致CMS的致病基因中,最常见的是CHRNE、RAPSN、COLQ、DOK7、CHAT和GFPT1。CMS可分为常染色体显性遗传(autosomal dominant, AD)和常染色体隐性遗传(autosomal recessive, AR)两种遗传方式[2]。
1 分类CMS根据损害部位分类,可分为突触前膜缺陷、突触间隙缺陷、突触后膜缺陷和糖基化缺陷;又因其相关的32个编码基因可分为32个CMS亚型[2-5],如表 1所示。
表 1 CMS的病因分类 |
![]() |
突触前膜缺陷中以CHAT基因突变引起的最多见,占CMS病例的4%~5%[2]。CHAT基因编码的胆碱乙酰基转移酶是一种在神经元胞体内合成的酶,随轴浆顺向转运到神经末梢,其功能是催化乙酰辅酶A和胆碱合成乙酰胆碱[2-3]。SLC18A3蛋白能将新合成的乙酰胆碱从神经元胞浆转入突触囊泡,SLC5A7蛋白参与轴突运输。SNAP25编码的可溶性N-乙基-马来酰亚胺敏感融合(NSF)附着蛋白,VAMP1/SYB1编码的囊泡相关膜蛋白-1,SYT2编码的突触素-2和MUNC13-1蛋白在突触小泡的贴靠、膜融合及胞吐作用中起重要作用[6-14]。
2.2 突触间隙突触间隙缺陷中以COLQ基因突变引起的最多见,占10%~15%[2]。COLQ基因编码乙酰胆碱酯酶的胶原尾亚基,能将乙酰胆碱酯酶锚定在基底板。所以COLQ基因突变胆碱酯酶将无法锚定在突触间隙,乙酰胆碱无法被正常水解,造成突触后膜乙酰胆碱受体的过度激活,影响正常信号传递,导致CMS[1-2, 4, 15]。LAMB 2、LAMA 5和COL13A1基因分别编码层黏连蛋白β2、层黏连蛋白α5和XⅢ型胶原蛋白α1,突变可导致突触基底膜缺损[2-3, 16-18]。
2.3 突触后膜CMS亚型中以突触后蛋白编码基因最常见,据报道已有15种,其中以CHRNE最常见,RAPSN和DOK7次之,分别占30%~50%、15%、10%。突触后CMS可分为三类:原发性乙酰胆碱受体(acetylcholine receptor, AChR)缺乏症、AChR动力学异常、AChR聚集信号通路中的缺陷[2]。
CHRNA1、CHRNB1、CHRND、CHRNE和CHRNG分别编码烟碱型乙酰胆碱受体(nicotinic acetylcholine receptor, nAChR)的α亚基、β亚基、δ亚基、ε亚基和γ亚基,这5个亚基组成五聚体离子通道。这5个基因突变可导致AChR离子通道的表达丧失,减少突触后膜中乙酰胆碱受体的数量从而导致原发性AChR缺乏症。也可以使离子通道功能发生变化,导致通道开放时间延长(慢通道综合征)或通道开放时间缩短(快通道综合征),即AChR动力学异常[19-21]。
AChR聚集信号通路:神经末梢释放集聚蛋白(Agrin)—Agrin与LRP4蛋白结合—骨骼肌受体酪氨酸激酶(MuSK)激活并与LRP4蛋白形成Agrin的共同受体—蛋白质DOK7二聚化完全激活MuSK—AChR β亚基磷酸化—与细胞质锚定蛋白Rapsyn结合—AChR聚集并锚定在突触后膜上—AChR簇最终稳定。AGRN基因编码集聚蛋白(Agrin),LRP4基因编码作为Agrin的受体的LRP4蛋白,MUSK基因编码MuSK,DOK7基因编码的Dok7蛋白充当MuSK的激活剂和MuSK下游信号传导的衔接蛋白,RAPSN基因编码细胞质锚定蛋白Rapsyn[2, 6, 22-23]。
MYO9A基因编码的蛋白已知在轴突运输中起重要作用[24]。PREPL基因编码的PREPL蛋白是网格蛋白相关的衔接蛋白-1(AP-1)的必需活化剂,参与囊泡乙酰胆碱的运输和填充[25]。SCN4A基因编码突触后钠通道,负责膜动作电位的生成[26]。SLC25A1编码跨内线粒体膜的线粒体柠檬酸盐载体,是脂肪酸和固醇生物合成,染色体完整性和自噬调节的关键参与者[27]。
2.4 糖基化缺陷糖基化对神经肌肉接头的正常运作是必不可少的,它发生在内质网中[2]。由于AChR糖基化缺陷,导致终板区域AChR的缺失,进而引起突触后膜乙酰胆碱的反性下降,临床上表现为CMS[28]。已知有5个参与AChR糖基化的基因,以GFPT1最多见,占2%。GFPT1基因编码谷氨酰胺果糖-6-磷酸转氨酶1,它是控制氨基己糖生物合成途径的关键限速酶[2, 29]。GMPPB基因编码催化酶GMPPB,将甘露糖-1-磷酸和GTP转化为GDP-甘露糖,GDP-甘露糖作为糖供体[30]。ALG2、ALG14和DPAGT1编码的酶催化天冬酰胺连接糖基化的早期步骤[31]。
3 临床特点CMS具有一些共同的临床表现:(1)CMS起病早,常在出生后或婴幼儿期发病,缓慢进展。(2)临床主要表现为眼部、躯干、肢体肌肉力弱。常有喂养困难、哭声低、眼睑下垂、吞咽呛咳和运动发育迟滞等症状。(3)不耐受疲劳,症状可能在发热、感染等诱因下突然加重。(4)心肌和平滑肌通常不受累[1-2, 15]。因为遗传机制的不同,各CMS亚型可具有相对特异的临床表现(表 2)[1-3, 7-42]。
表 2 不同基因所致CMS临床特点和治疗选择 |
![]() |
诊断CMS依赖于详细病史和体格检查,全面血液检测、电生理检查、肌肉病理及基因检测等检查。如果有以下症状,一般应怀疑CMS:(1)临床表现:肌无力和易疲劳。(2)家族病史阳性。(3)重症肌无力抗体检测为阴性。(4)重复神经电刺激示低频刺激波幅递减,神经传导测定可见重复的复合肌肉动作电位(RCMP)波,或单纤维肌电图出现颤抖值增宽或传导阻滞。(5)乙酰胆碱酯酶抑制剂(acetylcholine-esterase inhibitors, AChEI)治疗有效;新斯的明试验阳性。(6)经免疫抑制疗法无改善。(7)肌酸激酶、肌电图、肌肉活检等不支持其他神经肌肉接头疾病。(8)基因测序检测到致病基因突变[1-6, 15]。
5 治疗药物治疗:现在用于CMS的药物主要有4类,包括AChEI(溴吡斯的明、新斯的明)、钾通道阻滞剂(3, 4-二氨基吡啶)、β2-肾上腺素能受体激动剂(麻黄碱、沙丁胺醇)和AChR的通道阻滞剂(氟西汀、奎尼丁)[3]。大多数CMS(约2/3)对AChEI、3, 4-二氨基吡啶有较好的反应,而AChEI无效的CMS(COLQ/DOK7,占1/5~1/4左右)大多可选择沙丁胺醇、麻黄碱治疗;慢通道综合征通常用奎尼丁和氟西汀治疗;而COLQ、LAMB2、DOK7、MUSK和LRP4基因相关CMS和慢通道综合征用溴吡斯的明病情会加重[2-5]。各CMS亚型的治疗见表 2。
其他治疗:对症支持治疗:包括理疗、言语治疗;矫形器、步行器或轮椅;呼吸支持等[2, 31-32]。动物中,反义寡核苷酸技术(antisense oligonucleo-tides, AONs)已被证明对CHRNA1相关的CMS是有益的[20]。
6 总结和展望因CMS发病率低,临床表现异质性大,可以很容易地与其他神经肌肉疾病(尤其是肢带型肌营养不良和线粒体疾病)混合在一起,很容易被误诊和漏诊。如果临床出现波动性肌无力症状、家族史阳性、起病年龄早且治疗效果不好反复复发的重症肌无力患者,均需考虑CMS可能,可尝试早期遗传学检测,并尝试性使用AChEI或β2-肾上腺素能受体激动剂治疗。CMS的诊断和治疗尚未标准化,但通过早期诊断和早期针对性用药,许多患者可以得到明显改善。而且近年来,已经提出了许多有前途的建议来治疗某些CMS亚型,比如在动物中,AONs已被证明对CHRNA1相关的CMS是有益的。
[1] |
戴毅, 丁青云, 何腾龙, 等. 终板胆碱酯酶缺失型先天性肌无力综合征一家系的临床、电生理、肌肉病理和基因研究[J]. 中华神经科杂志, 2016, 49(8): 604-609. DOI:10.3760/cma.j.issn.1006-7876.2016.08.005 ( ![]() |
[2] |
Finsterer J. Congenital myasthenic syndromes[J]. Orphanet J Rare Dis, 2019, 14(1): 57. DOI:10.1186/s13023-019-1025-5 ( ![]() |
[3] |
Vanhaesebrouck AE, Beeson D. The congenital myasthenic syndromes:expanding genetic and phenotypic spectrums and refining treatment strategies[J]. Curr Opin Neurol, 2019, 32(5): 696-703. DOI:10.1097/WCO.0000000000000736 ( ![]() |
[4] |
Engel AG. Congenital myasthenic syndromes in 2018[J]. Curr Neurol Neurosci Rep, 2018, 18(8): 46. DOI:10.1007/s11910-018-0852-4 ( ![]() |
[5] |
Engel AG, Shen XM, Selcen D, et al. Congenital myasthenic syndromes:pathogenesis, diagnosis, and treatment[J]. Lancet Neurol, 2015, 14(4): 420-434. DOI:10.1016/S1474-4422(14)70201-7 ( ![]() |
[6] |
Souza PV, Batistella GN, Lino VC, et al. Clinical and genetic basis of congenital myasthenic syndromes[J]. Arq Neuropsiquiatr, 2016, 74(9): 750-760. DOI:10.1590/0004-282X20160106 ( ![]() |
[7] |
Bauché S, O'regan S, Azuma Y, et al. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea[J]. Am J Hum Genet, 2016, 99(3): 753-761. DOI:10.1016/j.ajhg.2016.06.033 ( ![]() |
[8] |
Arican P, Gencpinar P, Cavusoglu D, et al. Clinical and genetic features of congenital myasthenic syndromes due to CHAT mutations:case reportand literature review[J]. Neuropediatrics, 2018, 49(4): 283-288. DOI:10.1055/s-0038-1654706 ( ![]() |
[9] |
O'Grady GL, Verschuuren C, Yuen M, et al. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome[J]. Neurology, 2016, 87(14): 1442-1448. DOI:10.1212/WNL.0000000000003179 ( ![]() |
[10] |
Shen XM, Selcen D, Brengman J, et al. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability[J]. Neurology, 2014, 83(24): 2247-2255. DOI:10.1212/WNL.0000000000001079 ( ![]() |
[11] |
Salpietro V, Lin W, Delle Vedove A, et al. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome[J]. Ann Neurol, 2017, 81(4): 597-603. DOI:10.1002/ana.24905 ( ![]() |
[12] |
Shen XM, Scola RH, Lorenzoni PJ, et al. Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome[J]. Ann Clin Transl Neurol, 2017, 4(2): 130-138. DOI:10.1002/acn3.387 ( ![]() |
[13] |
Whittaker RG, Herrmann DN, Bansagi B, et al. Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome[J]. Neurology, 2015, 85(22): 1964-1971. DOI:10.1212/WNL.0000000000002185 ( ![]() |
[14] |
Xu J, Camacho M, Xu Y, et al. Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of munc13-1 C1C2BMUN[J]. Elife, 2017, 6: e22567. DOI:10.7554/eLife.22567 ( ![]() |
[15] |
孔维泽, 刘明生, 关鸿志, 等. COLQ基因突变致先天性肌无力综合征一例[J]. 中华神经科杂志, 2016, 49(2): 127-128. DOI:10.3760/cma.j.issn.1006-7876.2016.02.011 ( ![]() |
[16] |
Maselli RA, Ng JJ, Anderson JA, et al. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome[J]. J Med Genet, 2009, 46(3): 203-208. ( ![]() |
[17] |
Maselli RA, Arredondo J, Vázquez J, et al. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission[J]. Am J Med Genet A, 2017, 173(8): 2240-2245. DOI:10.1002/ajmg.a.38291 ( ![]() |
[18] |
Logan CV, Cossins J, Rodríguez CP, et al. Congenital myasthenic syndrome type 19 is caused by mutations in COL13A1, encoding the atypical non-fibrillar collagen type XIII α1 chain[J]. Am J Hum Genet, 2015, 97(6): 878-885. DOI:10.1016/j.ajhg.2015.10.017 ( ![]() |
[19] |
Brugnoni R, Maggi L, Canioni E, et al. Identification of previously unreported mutations in CHRNA1, CHRNE and RAPSN genes in three unrelated Italian patients with congenital myasthenic syndromes[J]. J Neurol, 2010, 257(7): 1119-1123. DOI:10.1007/s00415-010-5472-0 ( ![]() |
[20] |
Tei S, Ishii HT, Mitsuhashi H, et al. Antisense oligonucleotide-mediatedexon skipping of CHRNA1 pre-mRNA as potential therapy for congenital myasthenic syndromes[J]. Biochem Biophys Res Commun, 2015, 461(3): 481-486. DOI:10.1016/j.bbrc.2015.04.035 ( ![]() |
[21] |
Webster R, Liu WW, Chaouch A, et al. Fast-channel congenital myasthenic syndrome with a novel acetylcholine receptor mutation at the α-ε subunit interface[J]. Neuromuscul Disord, 2014, 24(2): 143-147. DOI:10.1016/j.nmd.2013.10.009 ( ![]() |
[22] |
Huzé C, Bauché S, Richard P, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function[J]. Am J Hum Genet, 2009, 85(2): 155-167. DOI:10.1016/j.ajhg.2009.06.015 ( ![]() |
[23] |
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes[J]. Clin Exp Neuroimmunol, 2016, 7(3): 246-259. DOI:10.1111/cen3.12316 ( ![]() |
[24] |
O'Connor E, Töpf A, Müller JS, et al. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome[J]. Brain, 2016, 139(Pt 8): 2143-2153. ( ![]() |
[25] |
Régal L, Shen XM, Selcen D, et al. PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome[J]. Neurology, 2014, 82(14): 1254-1260. DOI:10.1212/WNL.0000000000000295 ( ![]() |
[26] |
Habbout K, Poulin H, Rivier F, et al. A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis[J]. Neurology, 2016, 86(2): 161-169. DOI:10.1212/WNL.0000000000002264 ( ![]() |
[27] |
Chaouch A, Porcelli V, Cox D, et al. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission[J]. J Neuromuscul Dis, 2014, 1(1): 75-90. DOI:10.3233/JND-140021 ( ![]() |
[28] |
戴廷军, 赵冰, 温冰, 等. 鸟苷二磷酸甘露糖焦磷酸化酶β亚基基因突变致肢带型肌营养不良合并先天性肌无力综合征[J]. 中华神经科杂志, 2018, 51(6): 412-418. DOI:10.3760/cma.j.issn.1006-7876.2018.06.003 ( ![]() |
[29] |
Helman G, Sharma S, Crawford J, et al. Leukoencephalopathy due to variants in GFPT1-associated congenital myasthenic syndrome[J]. Neurology, 2019, 92(6): e587-e593. DOI:10.1212/WNL.0000000000006886 ( ![]() |
[30] |
Jensen BS, Willer T, Saade DN, et al. GMPPB-associated dystroglycanopathy:emerging common variants with phenotype correlation[J]. Hum Mutat, 2015, 36(12): 1159-1163. DOI:10.1002/humu.22898 ( ![]() |
[31] |
Cossins J, Belaya K, Hicks D, et al. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14[J]. Brain, 2013, 136(Pt 3): 944-956. ( ![]() |
[32] |
刘志梅, 方方, 丁昌红, 等. CHAT基因突变导致的先天性肌无力综合征伴发作性呼吸暂停二例[J]. 中华儿科杂志, 2018, 56(3): 216-220. DOI:10.3760/cma.j.issn.0578-1310.2018.03.012 ( ![]() |
[33] |
Schara U, Christen HJ, Durmus H, et al. Long-term follow-up in patients with congenital myasthenic syndrome due to CHAT mutations[J]. Eur J Paediatr Neurol, 2010, 14(4): 326-333. DOI:10.1016/j.ejpn.2009.09.009 ( ![]() |
[34] |
Liewluck T, Selcen D, Engel AG. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and DOK-7 myasthenia[J]. Muscle Nerve, 2011, 44(5): 789-794. DOI:10.1002/mus.22176 ( ![]() |
[35] |
Shen XM, Okuno T, Milone M, et al. Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating[J]. Hum Mutat, 2016, 37(10): 1051-1059. DOI:10.1002/humu.23043 ( ![]() |
[36] |
Tan JS, Ambang T, Ahmad-Annuar A, et al. Congenital myasthenic syndrome due to novel CHAT mutations in an ethnic kadazandusun family[J]. Muscle Nerve, 2016, 53(5): 822-826. DOI:10.1002/mus.25037 ( ![]() |
[37] |
苏净, 李传芬, 陶珍, 等. CHRNE基因突变导致的先天性肌无力综合征的临床和电生理分析[J]. 中华神经科杂志, 2014, 47(12): 847-851. DOI:10.3760/cma.j.issn.1006-7876.2014.12.007 ( ![]() |
[38] |
Bevilacqua JA, Lara M, Díaz J, et al. Congenital myasthenic syndrome due to DOK7 mutations in a family from Chile[J]. Eur J Transl Myol, 2017, 27(3): 6832. ( ![]() |
[39] |
Giarrana ML, Joset P, Sticht H, et al. A severe congenital myasthenic syndrome with "dropped head" caused by novel MUSK mutations[J]. Muscle Nerve, 2015, 52(4): 668-673. DOI:10.1002/mus.24687 ( ![]() |
[40] |
Nicole S, Chaouch A, Torbergsen T, et al. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy[J]. Brain, 2014, 137(Pt 9): 2429-2443. ( ![]() |
[41] |
Natera-de Benito D, Bestué M, Vilchez JJ, et al. Long-term follow-up in patients with congenital myasthenic syndrome due to RAPSN mutations[J]. Neuromuscul Disord, 2016, 26(2): 153-159. DOI:10.1016/j.nmd.2015.10.013 ( ![]() |
[42] |
张巍, 徐春晓, 孟令超, 等. 谷氨酰胺-果糖-6-磷酸转氨酶1相关性肢带型先天性肌无力综合征二例临床分析[J]. 中华神经科杂志, 2015, 48(7): 580-584. DOI:10.3760/cma.j.issn.1006-7876.2015.07.008 ( ![]() |