2. 上海市出生缺陷防治重点实验室/复旦大学儿童发育与疾病转化医学研究中心/卫生部新生儿疾病重点实验室/复旦大学附属儿科医院新生儿科, 上海 201102
根据世界卫生组织的数据,截至2020年12月19日,全球有72 851 747例新型冠状病毒肺炎(coronavirus disease 2019, COVID-19)确诊病例,1 643 339例死亡[1]。COVID-19可发生于任何年龄段,儿童最常见症状是发热、咳嗽,其他症状包括疲劳、肌痛、嗅觉减退、头痛头晕、恶心呕吐、腹痛腹泻、癫痫发作等,症状大多在1周内消失[2-3]。与成人相比,儿童COVID-19发病率较低,严重程度较低[4]。虽然COVID-19以呼吸系统症状为主,但是逐渐发现多个系统都可出现感染症状,其中约有21%~36%患者出现神经系统症状[5-6]。一项Meta分析显示儿童COVID-19出现头痛、肌痛等非特异性神经系统症状占16.7%,癫痫发作、脑病等特异性神经系统症状占1%[7]。值得注意的是,部分患儿以神经系统症状为首发症状[8-10]。本文就儿童COVID-19神经系统损伤的机制及神经系统损伤的类型作一综述。
1 神经系统损伤的机制病毒感染过程中,机体出现缺氧状态、炎症反应及高凝状态,可能造成神经系统损伤,并且各种机制之间具有协同作用。
1.1 神经系统感染COVID-19存在直接侵袭神经系统的可能性。嗅上皮存在病毒感染所需的两种蛋白质,即血管紧张素转化酶2(angiotensin-converting enzyme 2, ACE2)和跨膜丝氨酸蛋白酶2(transmembrane serine protease 2, TMPRSS2)[11]。ACE2是冠状病毒的主要受体,TMPRSS2具有介导冠状病毒刺突蛋白(S蛋白)水解的作用[12]。Netland等[13]发现人ACE2转基因小鼠感染非典型肺炎病毒后,病毒通过嗅上皮,以跨神经元的方式经过嗅球,沿轴突运输到大脑某些区域,造成大量神经元死亡。并且小鼠预后与转基因拷贝数和人ACE2 mRNA水平相关。
嗅上皮含有神经细胞和非神经细胞,ACE2在非神经细胞高表达,TMPRSS2在神经细胞和非神经细胞均可表达,并且高于ACE2的表达[14-15]。嗅上皮的嗅觉神经元是嗅上皮唯一与大脑相连的神经元。据推测,新型冠状病毒首先侵入高表达ACE2的嗅上皮非神经细胞,然后运输到低表达ACE2的成熟嗅觉神经元,最后沿轴突运输到大脑[11]。由于ACE2是否存在于人脑实质中仍未知[12],所以这可能是一种ACE2非依赖性的病毒轴突运输机制。
1.2 细胞因子风暴细胞因子风暴是指机体感染病原体后多种细胞因子,如肿瘤坏死因子-α(tumour necrosis factor-α, TNF-α)、白介素(interleukin, IL)-1、IL-6、IL-8、IL-12、干扰素(interferon, IFN)-α、IFN-β、IFN-γ、单核细胞趋化蛋白-1(monocyte chemoattractant protein-1, MCP-1)等迅速大量产生,是引起急性呼吸窘迫综合征和多脏器功能衰竭的重要原因,可预测COVID-19患者的严重程度[16]。细胞因子具有神经毒性,会造成神经细胞损伤[17]。病毒感染含ACE2受体的内皮细胞或通过细胞因子驱动免疫反应都可能破坏血脑屏障的完整性[18-19]。病毒通过受损的血脑屏障进入中枢神经系统,可导致脑膜炎或脑炎。
1.3 高凝状态严重COVID-19患者可出现脓毒症性凝血病,表现为D-二聚体和纤维蛋白原升高。脓毒症性凝血病是弥散性血管内凝血的前驱状态,与感染诱导的全身炎症反应有关,伴有血管内皮功能障碍和微血栓形成[20]。有报道显示COVID-19患者出现呼吸衰竭后肺顺应性相对保持不变,同时具有较高的肺泡-动脉氧分压,尸检报告显示肺弥漫性微血栓,说明呼吸衰竭的原因是血管闭塞,而不是以肺顺应性降低为特点的急性呼吸窘迫综合征[21]。血栓形成不仅影响呼吸系统,还增加了脑梗死的风险,出现年轻患者脑梗死发病率增高的现象[22]。此外,炎症反应与高凝状态可以相互促进,相互影响。全身炎症反应通过组织因子介导凝血酶的生成,抑制内源性纤维蛋白溶解来促进凝血的发生。同时,激活的凝血蛋白酶通过影响炎症细胞和内皮细胞上的特定细胞受体,从而调节炎症反应[23]。
1.4 缺氧严重COVID-19引起缺氧,通过多种继发的病理生理变化影响大脑,从而造成神经系统的损伤[24]。缺氧不仅介导氧化应激反应,造成神经元和星形胶质细胞坏死、凋亡,还影响脑细胞能量代谢障碍,造成代谢性酸中毒导致脑血管痉挛和通透性增加,导致间质性脑水肿和颅内压增高[25]。
2 神经系统损伤的类型儿童与成人COVID-19神经系统损伤特征存在差异[26]。尽管儿童COVID-19神经系统损伤病例报道不多,但神经系统症状出现较早并具有多样性,值得引起人们的关注。
2.1 嗅觉、味觉减退目前认为,不伴鼻塞、流涕的嗅觉、味觉减退是COVID-19的早期症状甚至首发症状[27-28]。嗅觉减退的主要原因是鼻咽黏膜的感染和/或嗅觉相关神经元的损伤[29],因为病毒可通过结合嗅上皮ACE2受体进入中枢神经系统[11]。味觉减退可能与新型冠状病毒与唾液酸中的受体结合有关,影响味觉形成,或是由于大脑对味觉和嗅觉的感受相互关联[29]。嗅觉减退的患者IL-6的水平升高,因为IL-6参与嗅觉相关的信号通路,所以推测IL-6升高降低了嗅神经细胞的活性[30]。嗅觉、味觉功能短时间内恢复伴IL-6水平降低[29],与上述推测相符。研究显示,41%的COVID-19患者出现嗅觉和/或味觉减退[28],但在儿童中该比例只有5.2%[31]。虽然以主观症状作为婴幼儿的评估可能导致数据不够准确,把嗅觉、味觉减退作为早期症状在儿童中进行筛查也有一定的局限性,但仍值得引起家长和临床医生的注意。目前未在儿童人群中开展该方面的研究。英国报道了3例以嗅觉、味觉功能障碍为主要症状的青少年病例,不伴有其他症状或伴轻微的全身症状,预后良好[9]。由于嗅上皮可能是病毒入侵神经系统的首要靶点,所以对出现嗅觉、味觉障碍的轻度COVID-19患儿,应及时检查是否存在其他神经系统损伤。
2.2 癫痫发作癫痫发作是儿童COVID-19常见的特异性神经系统症状[7]。病毒感染介导细胞因子大量释放,其中IL-1β使星形胶质细胞谷氨酸盐释放增加、重吸收减少,导致神经元过度兴奋[32],TNF-α、IL-6提高血脑屏障的通透性,使中枢神经系统的渗透失衡[33]。同时神经细胞突触后膜离子型谷氨酸受体中N-甲基-D-天冬氨酸受体2B亚基数量增加,诱导癫痫发作[34]。García-Howard等[35]报道1名3月龄COVID-19患儿,既往无癫痫发作史,此次以反复癫痫发作为主要症状,不伴有发热,其他病毒检测均为阴性。经全外显子测序发现,该婴儿与其母亲均携带PRRT2基因缺失变异体,与良性家族性婴儿惊厥有关。所以推测,COVID-19可能诱发遗传性癫痫综合征发作。此外,癫痫发作可以是COVID-19患儿的唯一临床表现[8],也可以继发于COVID-19相关脑炎、脑膜炎、儿童多系统炎症综合征[36-38]。长期、反复或严重的癫痫发作会造成进一步的神经系统损伤,使用抗癫痫药可以控制COVID-19患儿的癫痫发作,并且具有良好的短期预后[7]。
2.3 热性惊厥热性惊厥(febrile seizure, FS)是指发生在生后3个月至5岁,发热初期或体温快速上升期出现的惊厥,排除中枢神经系统感染及引发惊厥发作的任何其他急性病因,既往也没有无热惊厥史。除遗传因素外,病毒和细菌感染是其重要的发病因素,发病机制与细胞因子有关[12]。发热会增加脑内炎症介质的释放,尤其是IL-1β等细胞因子[39]。Dugue等[40]报道一名有FS家族史的COVID-19患儿,出现FS伴鼻病毒和肠道病毒感染。Tan等[41]报道一名COVID-19患儿,出现FS伴支原体感染。研究显示,9%的FS患儿存在冠状病毒感染[42],并且常存在2种及以上的病毒合并感染[42-43]。此外,研究显示,40%的COVID-19患儿存在其他病毒的合并感染[44]。所以,对COVID-19伴FS患儿,应进行其他病原体的检测。
2.4 吉兰-巴雷综合征吉兰-巴雷综合征(Guillain-Barré syndrome, GBS)是一种自身免疫介导的周围神经病。GBS的确切病因未明,但50%~70%的病例在起病1~2周前有呼吸道或胃肠道感染,或是由于其他免疫刺激导致周围神经及脊神经根发生异常的自身免疫反应。某些病毒,如巨细胞病毒和水痘-带状疱疹病毒,可能通过直接感染神经而导致周围神经病变[45]。但37例成人和2例儿童COVID-19伴GBS病例中,均未在脑脊液中检测到该病毒[46-48]。新型冠状病毒的S蛋白介导病毒与细胞表面结合,S蛋白不仅结合ACE2受体[11],还能结合细胞表面含唾液酸的糖蛋白和神经节苷脂[49]。分子模拟是目前认为最可能导致GBS发病的最主要机制之一。因此,S蛋白结合的细胞表面神经节苷脂与周围神经节苷脂可能发生交叉反应[48]。目前,只报道了2例儿童COVID-19伴GBS病例,均预后良好,未见少数严重成人GBS患者呼吸衰竭的症状[46-47]。COVID-19伴GBS罕见,羟氯喹可通过抑制S蛋白与神经节苷脂结合从而达到治疗目的[49]。
2.5 病毒性脑炎、病毒性脑膜炎冠状病毒感染导致病毒性脑炎或脑膜炎的报道较少见[12]。目前,成人和儿童均有COVID-19伴病毒性脑炎病例的报道,且已在脑脊液中检测到病毒[50-51]。主要机制包括病毒侵袭中枢神经系统,和病毒感染继发的炎症反应。研究显示,12%儿童急性脑炎患儿存在冠状病毒感染,说明冠状病毒是中枢神经系统感染的常见病原体,并且患儿脑脊液中IL-6、IL-8和MCP-1明显增多。IL-6提高血脑屏障的通透性,IL-8激活中性粒细胞,与血脑屏障的破坏有关[52]。MCP-1是一种趋化因子,对单核细胞有趋化作用,使其穿过血脑屏障,可能导致病毒感染的细胞进入中枢神经系统[53-54]。但这种细胞因子增多的现象是非特异性的,登革热病毒脑炎和日本脑炎病毒脑炎均有类似的现象[54]。COVID-19伴病毒性脑炎或脑膜炎主要症状包括头痛、呕吐、乏力,病毒性脑炎还可出现偏瘫、偏身感觉障碍、癫痫发作等症状,病毒性脑膜炎可出现脑膜刺激征[37-38, 50, 55],这些症状对疾病的早期发现具有重要意义。
2.6 局灶性脑动脉病儿童局灶性脑动脉病(focal cerebral arteriopathy, FCA)是指大脑动脉单侧狭窄引起的急性病[56-57],分为FCA-夹层型和FCA-炎症型。带状疱疹病毒感染是FCA的常见病因[58],其他病原体感染较少见。研究显示,感染是儿童脑梗死的危险因素,脑梗死前1周的感染使脑梗死风险增加6.3倍[59]。感染可通过多种机制引起脑梗死。急性感染时,促凝血途径被激活而抗凝血途径被抑制[60]。此外,儿童急性感染与感染后3个月颈动脉内膜中层增厚有关[61]。
FCA是儿童COVID-19相关急性脑卒中的病因之一。Gulko等[36]发现一名患儿出现失语和肢体运动障碍,经血管壁成像(vascular wall imaging, VWI)检查,诊断为FCA-炎症型。Mirzaee等[10]发现一名12岁患儿出现癫痫全面性发作、右侧偏瘫和构音障碍,影像学表现为单侧局灶性的血管病变,未行VWI检查,诊断为FCA。VWI检查有助于FCA的特异性诊断及分型[56]。治疗上,糖皮质激素可改善儿童FCA的预后[62]。
2.7 儿童多系统炎症综合征2020年4月以来,欧美国家相继报道与COVID-19相关的儿童重症病例,与川崎病和中毒性休克症状相似。美国疾病预防控制中心将其命名为儿童多系统炎症综合征(multisystem inflammatory syndrome in children, MIS-C)。Meta分析显示,约25%~50%的MIS-C患儿存在神经系统症状[63]。Abdel-Mannan等[64]发现4名MIS-C患儿新发神经系统症状,表现为头痛、小脑性共济失调、构音障碍、吞咽困难、肌无力和反射减退,影像学检查均可见胼胝体异常。MIS-C患儿病情严重,除上述神经系统症状外,还可出现意识障碍、继发癫痫发作,以及脑出血、脑梗死、丘脑病变等儿童少见的神经系统症状,甚至死亡[65-68]。
目前认为COVID-19伴MIS-C是一种迟发的免疫反应,与病毒感染后全身炎症反应相关[69-70]。研究显示,与未患MIS-C的COVID-19相比,MIS-C部分免疫指标存在显著差异,包括趋化因子和细胞因子的水平、T淋巴细胞各亚群的比例和NK细胞的数量[71]。MIS-C患儿CX3CR1+CD8+T淋巴细胞的激活和增殖显著升高,且与D-二聚体的水平呈正相关[70]。CX3CR1是趋化因子CX3CL1的受体,可介导CD8+T淋巴细胞与表达CX3CL1的血管内皮细胞和平滑肌细胞结合[72]。与未出现血栓的成人COVID-19患者相比,疑似或已有血栓形成的成人患者CX3CR1+CD8+T淋巴细胞激活的比例较高[70]。这可能预示MIS-C患儿血栓形成风险较高。
此外,除IL-6、IL-10、TNF-α升高外,De Paulis等[65]发现一名MIS-C患儿脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)明显降低。BDNF是一种具有神经营养作用的蛋白质,COVID-19可能通过ACE2/Mas/BDNF信号通路,抑制BDNF的合成和释放[73],BDNF的减少可能会对儿童的神经发育及认知功能有长期的影响[65, 74]。
3 结语目前,全球COVID-19的疫情尚未完全控制,COVID-19病例仍在不断增加。该病的发病机制仍需进一步研究。目前报道的儿童COVID-19神经系统损伤的病例较少,相关研究较少。实际的病例数应该是大于目前已知的,因为过去人们大部分关注呼吸系统的症状,对神经系统的描述较少。在已报道的病例中,大部分儿童神经系统损伤的短期预后较好,但是否存在后遗症仍是未知的,并且年龄较小的儿童大脑仍处于发育阶段,因此对COVID-19患儿可能存在的神经系统表现细致观察,对COVID-19患儿的神经系统长期随访跟踪,并在此基础上进一步深入研究其神经损伤机制、探索干预的手段方法,显得尤为重要。
[1] |
World Health Organization. WHO coronavirus disease (COVID-19) dashboard[DB/OL]. [2020-12-19]. https://covid19.who.int/.
( ![]() |
[2] |
Choi SH, Kim HW, Kang JM, et al. Epidemiology and clinical features of coronavirus disease 2019 in children[J]. Clin Exp Pediatr, 2020, 63(4): 125-132. DOI:10.3345/cep.2020.00535 ( ![]() |
[3] |
Garazzino S, Montagnani C, Donà D, et al. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as at 10 April 2020[J]. Euro Surveill, 2020, 25(18): 2000600. ( ![]() |
[4] |
Viner RM, Mytton OT, Bonell C, et al. Susceptibility to SARS-CoV-2 infection among children and adolescents compared with adults: a systematic review and meta-analysis[J]. JAMA Pediatr, 2021, 175(2): 143-156. DOI:10.1001/jamapediatrics.2020.4573 ( ![]() |
[5] |
Mao L, Jin HJ, Wang MD, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China[J]. JAMA Neurol, 2020, 77(6): 683-690. DOI:10.1001/jamaneurol.2020.1127 ( ![]() |
[6] |
Cagnazzo F, Arquizan C, Derraz I, et al. Neurological manifestations of patients infected with the SARS-CoV-2: a systematic review of the literature[J]. J Neurol, 2020. DOI: 10.1007/s00415-020-10285-9. Epub ahead of print.
( ![]() |
[7] |
Panda PK, Sharawat IK, Panda P, et al. Neurological complications of SARS-CoV-2 infection in children: a systematic review and meta-analysis[J]. J Trop Pediatr, 2020. DOI: 10.1093/tropej/fmaa070. Epub ahead of print.
( ![]() |
[8] |
Bhatta S, Sayed A, Ranabhat B, et al. New-onset seizure as the only presentation in a child with COVID-19[J]. Cureus, 2020, 12(6): e8820. ( ![]() |
[9] |
Mak PQ, Chung KS, Wong JS, et al. Anosmia and ageusia: not an uncommon presentation of COVID-19 infection in children and adolescents[J]. Pediatr Infect Dis J, 2020, 39(8): e199-e200. DOI:10.1097/INF.0000000000002718 ( ![]() |
[10] |
Mirzaee SMM, Gonçalves FG, Mohammadifard M, et al. Focal cerebral arteriopathy in a COVID-19[J]. Radiology, 2020, 297(2): E274-E275. DOI:10.1148/radiol.2020202197 ( ![]() |
[11] |
Butowt R, Bilinska K. SARS-CoV-2:olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection[J]. ACS Chem Neurosci, 2020, 11(9): 1200-1203. DOI:10.1021/acschemneuro.0c00172 ( ![]() |
[12] |
Morgello S. Coronaviruses and the central nervous system[J]. J Neurovirol, 2020, 26(4): 459-473. DOI:10.1007/s13365-020-00868-7 ( ![]() |
[13] |
Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2[J]. J Virol, 2008, 82(15): 7264-7275. DOI:10.1128/JVI.00737-08 ( ![]() |
[14] |
Saraiva LR, Ibarra-Soria X, Khan M, et al. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq[J]. Sci Rep, 2015, 5: 18178. DOI:10.1038/srep18178 ( ![]() |
[15] |
Kanageswaran N, Demond M, Nagel M, et al. Deep sequencing of the murine olfactory receptor neuron transcriptome[J]. PLoS One, 2015, 10(1): e0113170. DOI:10.1371/journal.pone.0113170 ( ![]() |
[16] |
Debuc B, Smadja DM. Is COVID-19 a new hematologic disease?[J]. Stem Cell Rev Rep, 2021, 17(1): 4-8. DOI:10.1007/s12015-020-09987-4 ( ![]() |
[17] |
Allan SM, Rothwell NJ. Cytokines and acute neurodegenera-tion[J]. Nat Rev Neurosci, 2001, 2(10): 734-744. DOI:10.1038/35094583 ( ![]() |
[18] |
Aghagoli G, Gallo Marin B, Katchur NJ, et al. Neurological involvement in COVID-19 and potential mechanisms: a review[J]. Neurocrit Care, 2020. DOI: 10.1007/s12028-020-01049-4. Epub ahead of print.
( ![]() |
[19] |
Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis[J]. J Pathol, 2004, 203(2): 631-637. DOI:10.1002/path.1570 ( ![]() |
[20] |
Hess DC, Eldahshan W, Rutkowski E. COVID-19-related stroke[J]. Transl Stroke Res, 2020, 11(3): 322-325. DOI:10.1007/s12975-020-00818-9 ( ![]() |
[21] |
Wang J, Hajizadeh N, Moore EE, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series[J]. J Thromb Haemost, 2020, 18(7): 1752-1755. DOI:10.1111/jth.14828 ( ![]() |
[22] |
Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young[J]. N Engl J Med, 2020, 382(20): e60. DOI:10.1056/NEJMc2009787 ( ![]() |
[23] |
Levi M, van der Poll T. Inflammation and coagulation[J]. Crit Care Med, 2010, 38(2 Suppl): S26-S34. ( ![]() |
[24] |
Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19:a literature review[J]. J Clin Neurosci, 2020, 77: 8-12. DOI:10.1016/j.jocn.2020.05.017 ( ![]() |
[25] |
Fan HY, Tang XJ, Song YX, et al. Influence of COVID-19 on cerebrovascular disease and its possible mechanism[J]. Neuropsychiatr Dis Treat, 2020, 16: 1359-1367. DOI:10.2147/NDT.S251173 ( ![]() |
[26] |
Christy A. COVID-19:a review for the pediatric neurologist[J]. J Child Neurol, 2020, 35(13): 934-939. DOI:10.1177/0883073820939387 ( ![]() |
[27] |
Luethgen M, Eggeling J, Heyckendorf J, et al. Changes in taste and smell as an early marker for COVID-19[J]. Int J Infect Dis, 2020, 99: 8-9. DOI:10.1016/j.ijid.2020.07.018 ( ![]() |
[28] |
Qiu CH, Cui C, Hautefort C, et al. Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: an international multicenter study[J]. Otolaryngol Head Neck Surg, 2020, 163(4): 714-721. DOI:10.1177/0194599820934376 ( ![]() |
[29] |
Cazzolla AP, Lovero R, Lo Muzio L, et al. Taste and smell disorders in COVID-19 patients: role of interleukin-6[J]. ACS Chem Neurosci, 2020, 11(17): 2774-2781. DOI:10.1021/acschemneuro.0c00447 ( ![]() |
[30] |
Henkin RI, Schmidt L, Velicu I. Interleukin 6 in hyposmia[J]. JAMA Otolaryngol Head Neck Surg, 2013, 139(7): 728-734. DOI:10.1001/jamaoto.2013.3392 ( ![]() |
[31] |
Gaborieau L, Delestrain C, Bensaid P, et al. Epidemiology and clinical presentation of children hospitalized with SARS-CoV-2 infection in suburbs of Paris[J]. J Clin Med, 2020, 9(7): 2227. DOI:10.3390/jcm9072227 ( ![]() |
[32] |
Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms[J]. Acta Neuropsychiatr, 2017, 29(1): 1-16. DOI:10.1017/neu.2016.47 ( ![]() |
[33] |
Rana A, Musto AE. The role of inflammation in the development of epilepsy[J]. J Neuroinflammation, 2018, 15(1): 144. DOI:10.1186/s12974-018-1192-7 ( ![]() |
[34] |
Postnikova TY, Zubareva OE, Kovalenko AA, et al. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors[J]. Biochemistry (Mosc), 2017, 82(3): 282-290. DOI:10.1134/S0006297917030063 ( ![]() |
[35] |
García-Howard M, Herranz-Aguirre M, Moreno-Galarraga L, et al. Case report: benign infantile seizures temporally associated with COVID-19[J]. Front Pediatr, 2020, 8: 507. DOI:10.3389/fped.2020.00507 ( ![]() |
[36] |
Gulko E, Overby P, Ali S, et al. Vessel wall enhancement and focal cerebral arteriopathy in a pediatric patient with acute infarct and COVID-19 infection[J]. AJNR Am J Neuroradiol, 2020, 41(12): 2348-2350. DOI:10.3174/ajnr.A6778 ( ![]() |
[37] |
Arango Ferreira C, Correa-Roda M. Acute meningoencephalitis as initial presentation of SARS-CoV-2 infection in pediatrics[J]. Pediatr Infect Dis J, 2020, 39(11): e386-e387. DOI:10.1097/INF.0000000000002885 ( ![]() |
[38] |
McAbee GN, Brosgol Y, Pavlakis S, et al. Encephalitis associated with COVID-19 infection in an 11-year-old child[J]. Pediatr Neurol, 2020, 109: 94. DOI:10.1016/j.pediatrneurol.2020.04.013 ( ![]() |
[39] |
McClelland S, Dubé CM, Yang J, et al. Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities[J]. Neurosci Lett, 2011, 497(3): 155-162. DOI:10.1016/j.neulet.2011.02.032 ( ![]() |
[40] |
Dugue R, Cay-Martínez KC, Thakur KT, et al. Neurologic manifestations in an infant with COVID-19[J]. Neurology, 2020, 94(24): 1100-1102. DOI:10.1212/WNL.0000000000009653 ( ![]() |
[41] |
Tan YP, Tan BY, Pan J, et al. Epidemiologic and clinical characteristics of 10 children with coronavirus disease 2019 in Changsha, China[J]. J Clin Virol, 2020, 127: 104353. DOI:10.1016/j.jcv.2020.104353 ( ![]() |
[42] |
Francis JR, Richmond P, Robins C, et al. An observational study of febrile seizures: the importance of viral infection and immunization[J]. BMC Pediatr, 2016, 16(1): 202. DOI:10.1186/s12887-016-0740-5 ( ![]() |
[43] |
Carman KB, Calik M, Karal Y, et al. Viral etiological causes of febrile seizures for respiratory pathogens (EFES Study)[J]. Hum Vaccin Immunother, 2019, 15(2): 496-502. DOI:10.1080/21645515.2018.1526588 ( ![]() |
[44] |
Xia W, Shao JB, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults[J]. Pediatr Pulmonol, 2020, 55(5): 1169-1174. DOI:10.1002/ppul.24718 ( ![]() |
[45] |
Tsai LK, Hsieh ST, Chao CC, et al. Neuromuscular disorders in severe acute respiratory syndrome[J]. Arch Neurol, 2004, 61(11): 1669-1673. DOI:10.1001/archneur.61.11.1669 ( ![]() |
[46] |
Frank CHM, Almeida TVR, Marques EA, et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection in a pediatric patient[J]. J Trop Pediatr, 2020. DOI: 10.1093/tropej/fmaa044. Epub ahead of print.
( ![]() |
[47] |
Khalifa M, Zakaria F, Ragab Y, et al. Guillain-Barré syndrome associated with severe acute respiratory syndrome coronavirus 2 detection and coronavirus disease 2019 in a child[J]. J Pediatric Infect Dis Soc, 2020, 9(4): 510-513. DOI:10.1093/jpids/piaa086 ( ![]() |
[48] |
Caress JB, Castoro RJ, Simmons Z, et al. COVID-19-associated Guillain-Barré syndrome: the early pandemic experience[J]. Muscle Nerve, 2020, 62(4): 485-491. DOI:10.1002/mus.27024 ( ![]() |
[49] |
Fantini J, Di Scala C, Chahinian H, et al. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection[J]. Int J Antimicrob Agents, 2020, 55(5): 105960. DOI:10.1016/j.ijantimicag.2020.105960 ( ![]() |
[50] |
Yousefi K, Poorbarat S, Abasi Z, et al. Viral meningitis associated with COVID-19 in a 9-year-old child: a case report[J]. Pediatr Infect Dis J, 2021, 40(2): e87-e98. DOI:10.1097/INF.0000000000002979 ( ![]() |
[51] |
Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19[J]. Lancet Neurol, 2020, 19(9): 767-783. DOI:10.1016/S1474-4422(20)30221-0 ( ![]() |
[52] |
Winter PM, Dung NM, Loan HT, et al. Proinflammatory cytokines and chemokines in humans with Japanese encephalitis[J]. J Infect Dis, 2004, 190(9): 1618-1626. DOI:10.1086/423328 ( ![]() |
[53] |
Li YY, Li HP, Fan RY, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children[J]. Intervirology, 2016, 59(3): 163-169. DOI:10.1159/000453066 ( ![]() |
[54] |
Li HP, Li YY, Wen B, et al. Dengue virus and Japanese encephalitis virus infection of the central nervous system share similar profiles of cytokine accumulation in cerebrospinal fluid[J]. Cent Eur J Immunol, 2017, 42(2): 218-222. ( ![]() |
[55] |
Conto-Palomino NM, Cabrera-Bueno ML, Vargas-Ponce KG, et al. Encephalitis associated with COVID-19 in a 13-year-old girl: a case report[J]. Medwave, 2020, 20(7): e7984. DOI:10.5867/medwave.2020.07.7984 ( ![]() |
[56] |
Wintermark M, Hills NK, Deveber GA, et al. Clinical and imaging characteristics of arteriopathy subtypes in children with arterial ischemic stroke: results of the VIPS study[J]. AJNR Am J Neuroradiol, 2017, 38(11): 2172-2179. DOI:10.3174/ajnr.A5376 ( ![]() |
[57] |
Fullerton HJ, Stence N, Hills NK, et al. Focal cerebral arteriopathy of childhood: novel severity score and natural history[J]. Stroke, 2018, 49(11): 2590-2596. DOI:10.1161/STROKEAHA.118.021556 ( ![]() |
[58] |
Lanthier S, Armstrong D, Domi T, et al. Post-varicella arteriopathy of childhood: natural history of vascular stenosis[J]. Neurology, 2005, 64(4): 660-663. DOI:10.1212/01.WNL.0000151851.66154.27 ( ![]() |
[59] |
Woo D. Infection, vaccination, and childhood arterial ischemic stroke[J]. Neurology, 2015, 85(17): e134. DOI:10.1212/WNL.0000000000002115 ( ![]() |
[60] |
Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke[J]. Nat Rev Neurol, 2010, 6(12): 681-694. ( ![]() |
[61] |
Liuba P, Persson J, Luoma J, et al. Acute infections in children are accompanied by oxidative modification of LDL and decrease of HDL cholesterol, and are followed by thickening of carotid intima-media[J]. Eur Heart J, 2003, 24(6): 515-521. DOI:10.1016/S0195-668X(02)00750-9 ( ![]() |
[62] |
Steinlin M, Bigi S, Stojanovski B, et al. Focal cerebral arteriopathy: do steroids improve outcome?[J]. Stroke, 2017, 48(9): 2375-2382. DOI:10.1161/STROKEAHA.117.016818 ( ![]() |
[63] |
Abrams JY, Godfred-Cato SE, Oster ME, et al. Multisystem inflammatory syndrome in children associated with severe acute respiratory syndrome coronavirus 2:a systematic review[J]. J Pediatr, 2020, 226: 45-54.e1. DOI:10.1016/j.jpeds.2020.08.003 ( ![]() |
[64] |
Abdel-Mannan O, Eyre M, Löbel U, et al. Neurologic and radiographic findings associated with COVID-19 infection in children[J]. JAMA Neurol, 2020, 77(11): 1-6. ( ![]() |
[65] |
De Paulis M, Oliveira DBL, Vieira RP, et al. Multisystem inflammatory syndrome associated with COVID-19 with neurologic manifestations in a child: a brief report[J]. Pediatr Infect Dis J, 2020, 39(10): e321-e324. DOI:10.1097/INF.0000000000002834 ( ![]() |
[66] |
Schupper AJ, Yaeger KA, Morgenstern PF. Neurological manifestations of pediatric multi-system inflammatory syndrome potentially associated with COVID-19[J]. Childs Nerv Syst, 2020, 36(8): 1579-1580. DOI:10.1007/s00381-020-04755-8 ( ![]() |
[67] |
Saeed A, Shorafa E. Status epilepticus as a first presentation of COVID-19 infection in a 3 years old boy; Case report and review the literature[J]. IDCases, 2020, 22: e00942. DOI:10.1016/j.idcr.2020.e00942 ( ![]() |
[68] |
Abel D, Shen MY, Abid Z, et al. Encephalopathy and bilateral thalamic lesions in a child with MIS-C associated with COVID-19[J]. Neurology, 2020, 95(16): 745-748. DOI:10.1212/WNL.0000000000010652 ( ![]() |
[69] |
Nakra NA, Blumberg DA, Herrera-Guerra A, et al. Multi-system inflammatory syndrome in children (MIS-C) following SARS-CoV-2 infection: review of clinical presentation, hypothetical pathogenesis, and proposed management[J]. Children (Basel), 2020, 7(7): 69. ( ![]() |
[70] |
Vella L, Giles JR, Baxter AE, et al. Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19[J]. medRxiv, 2020. DOI: 10.1101/2020.09.25.20201863. Epub ahead of print.
( ![]() |
[71] |
Gruber CN, Patel RS, Trachman R, et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C)[J]. Cell, 2020, 183(4): 982-995.E14. DOI:10.1016/j.cell.2020.09.034 ( ![]() |
[72] |
Mudd JC, Panigrahi S, Kyi B, et al. Inflammatory function of CX3CR1+ CD8+ T cells in treated HIV infection is modulated by platelet interactions[J]. J Infect Dis, 2016, 214(12): 1808-1816. DOI:10.1093/infdis/jiw463 ( ![]() |
[73] |
Motaghinejad M, Gholami M. Possible neurological and mental outcomes of COVID-19 infection: a hypothetical role of ACE-2\Mas\BDNF signaling pathway[J]. Int J Prev Med, 2020, 11: 84. ( ![]() |
[74] |
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications[J]. Arch Med Sci, 2015, 11(6): 1164-1178. ( ![]() |