%A LOU Li-Li, XIE Liang, HU Yu, CHEN Li-Na, LIANG Ping, SHI Fang, LIU Cai-Jun, LIU Han-Min %T Association of age distribution with the expression of angiotensin-converting enzyme 2 in lung tissues in severe acute respiratory syndrome coronavirus 2 infection: reflections from the study of RAS pathway expression in mice %0 Journal Article %D 2020 %J CJCP %R 10.7499/j.issn.1008-8830.2005045 %P 1119-1124 %V 22 %N 10 %U http://www.zgddek.com %8 2020-10-15 %X

Objective To study the expression of angiotensin-converting enzyme 2 (ACE2) and other key molecules of the RAS pathway in normal mice at different developmental stages, and to provide ideas for understanding the infection mechanism of coronavirus disease 2019 (COVID-19) as well as the diagnosis and treatment of children with COVID-19. Methods The mice at different developmental stages were enrolled, including fetal mice (embryonic days 14.5 and 18.5), neonatal mice (0, 3, 7, 14, and 21 days old), young mice (28 and 42 days old), and adult mice (84 days old). The lung tissues of all fetal mice from 4 pregnant mice were collected at each time point in the fetal group. Four mice were sampled in other age groups at each time point. Whole transcriptome resequencing was used to measure the mRNA expression of AGT, ACE, ACE2, Renin, Agtr1a, Agtr1b, Agtr2, and Mas1 in mouse lung tissue. Results The expression of ACE2 in the lungs showed changes from embryonic stage to adult stage. It increased gradually after birth, reached a peak on day 3 after birth, and reached a nadir on day 14 after birth (P < 0.05). The expression of AGT reached a peak on days 0 and 7 after birth and reached a nadir on day 21 after birth (P < 0.05). The expression of ACE increased rapidly after birth and reached a peak on day 21 after birth (P < 0.05). Agtr1a expression reached a peak on day 21 after birth (P < 0.05). Agtr2 expression gradually decreased to a low level after birth. Renin, Agtr1b, and Mas1 showed low expression in lung tissues at all developmental stages. Conclusions At different developmental stages of mice, ACE2 has dynamic expression changes, with high expression in early neonatal and adult mice. The other key molecules of the RAS pathway have their own expression patterns. These suggest that the difference in clinical features between children and adults with COVID-19 might be associated with the different expression levels of ACE2 in the different stages, and further studies are needed for the mechanism.