坏死性小肠结肠炎(necrotizing enterocolitis, NEC)是新生儿期特有的,尤其是早产儿,是由多因素导致的肠道炎症、损伤甚至坏死,并危及生命的复杂性、灾难性的疾病[1]。早产儿NEC主要与早产、低出生体重、发育不成熟及非母乳喂养有关,足月儿NEC发病率低,约占全部NEC病例的5%~25%,其发生机制与早产儿不同,主要与出生窒息、先天性心脏病、低血糖、脓毒血症等有关[1-2]。文献报道新生儿重症监护室(NICU)中NEC发生率为2%~5%[1-2]。近年来,由于采取多种管理措施,疾病程度有所减轻,但随着早产儿尤其超低出生体重儿(extremely low birth weight infants, ELBWIs)存活率提高,其发病率并无明显降低,也是早产儿主要死亡原因[3-8]。Sharma等[5]报道,85% NEC发生于胎龄≤32周或出生体重 < 1 500 g的早产儿,晚期早产儿(胎龄35~36周)及足月儿仅占全部病例的7%~15%。Niño等[6]报道极低出生体重儿(very low birth weight infants, VLBWIs)及ELBWIs NEC发生率约10%,出生体重400~750 g者NEC发生率约14%。该病起病急,进展快,少数患儿经内科治疗可缓解,部分病人可迅速发生肠坏死及感染性休克死于循环衰竭,需要外科治疗者,其结局取决于肠切除范围。文献报道需外科治疗的ELBWIs NEC死亡率达50%,存活者多有神经发育落后及长期胃肠道并发症[9-12]。中华医学会新生儿学组回顾性调查全国80所医院2005年整年住院新生儿共43 289例,NEC发病率为4%,病死率在16%~50%之间[7]。苏州大学附属儿童医院报道82例胎龄26~42周NEC的病死率为32%[8]。国内这些病例多为胎龄较大的早产儿及足月儿,不能全面反映早产儿NEC的临床特点[1-5],故国内尚缺乏专门针对早产儿NEC的系统报道。既往关于NEC发病的危险因素研究较多[7-8],但关于NEC结局危险因素的研究较少。因此,本研究回顾性分析不同胎龄早产儿NEC的临床资料,分析影响结局的危险因素,为早期诊断、改善预后提供依据。
1 资料与方法 1.1 研究对象收集2011年1月至2018年6月于中国医科大学附属盛京医院第二新生儿科住院并诊断为NEC的121例早产儿为研究对象。NEC诊断参照Bell诊断标准[10]。排除标准:(1)诊断NEC后家属放弃治疗;(2)先天畸形(发育畸形、遗传代谢病、染色体病)及自发性肠穿孔者。根据治疗方式分为非手术组和手术组,根据结局分为存活组和死亡组(因NEC或其并发症导致的死亡)。
外科手术指征:(1)气腹症;(2)内科保守治疗24~48 h无缓解,伴少尿、低血压、难以纠正的代谢性酸中毒及腹部X线或超声检查显示肠袢僵直固定、肠壁或门静脉积气;(3)腹腔穿刺为血性混浊液体[3]。
1.2 资料收集回顾性收集患儿的临床资料,包括孕母妊娠期情况:胎膜早破、高血压、糖尿病等;患儿一般资料:胎龄、出生体重、发病时间、性别等;出生情况:有无窒息、Apgar评分等;发病前伴发疾病情况:呼吸窘迫综合征(respiratory distress syndrome, RDS)、动脉导管未闭(patent ductus arteriosus, PDA)、肺出血等;喂养情况:喂养方式、开奶时间等;发病情况:临床表现、C-反应蛋白(C-reactive protein, CRP)最高值、血小板最低值等;治疗情况:是否手术、手术时间等;NEC的并发症及结局。
1.3 统计学分析应用SPSS 21.0统计软件进行数据处理。非正态分布的计量资料以中位数(四分位间距)[M(P25,P75)]表示,组间比较采用Mann-Whitney U检验。计数资料以百分比(%)表示,组间比较采用χ2、校正χ2或Fisher精确概率法检验。多因素分析采用多因素logistic回归分析(逐步向后回归法)。P < 0.05示差异有统计学意义。
2 结果 2.1 一般情况同期住院早产儿7 497例,NEC共132例(1.76%),其中11例诊断NEC后家属放弃治疗,余121例中男78例(64.5%),女43例(35.5%);平均胎龄30(29,32)周,平均出生体重1 409.0(1 121.5,1 720.0)g。发生NEC时日龄17(11,24)d,纠正胎龄33(31,34)周,高峰纠正胎龄31~34周。
121例患儿中,Ⅱ期80例(66.1%)、Ⅲ期41例(33.9%);非手术组66例(54.5%),死亡14例,手术组55例(45.4%),死亡31例。
2.2 非手术组与手术组临床资料比较手术组发生NEC时纠正胎龄、血便发生率及血小板最低值低于非手术组(P < 0.05),发生NEC时CRP最高值及病死率高于非手术组(P < 0.05),见表 1。
死亡组出生胎龄、出生体重、小于胎龄儿(small for gestational age, SGA)比例及发生NEC时纠正胎龄、体重、血小板最低值低于存活组(P < 0.05),PDA发生率、布洛芬使用率、发生NEC时CRP最高值、手术治疗率高于存活组(P < 0.05),见表 2。
将单因素筛选P < 0.05的变量纳入多因素logistic逐步回归分析,各因素的赋值说明见表 3。
多因素logistic逐步回归分析结果显示,使用布洛芬是NEC死亡的独立危险因素(β=2.214,SE=0.715,Wald χ2=9.590,P=0.002,OR=9.149,95%CI=2.25~37.14)。
3 讨论随着新生儿医学的发展,尤其表面活性物质、无创辅助通气及肠外营养的应用,NEC更多见于胎龄较小的早产儿[5]。由于NEC表现形式多样性,Bell分期用于诊断及决定外科手术治疗时机面临挑战,非特异性肠道疾病如喂养不耐受、败血症、原发性肠道缺血及自发性肠穿孔等常与Bell-Ⅰ期混淆,这些因素导致NEC缺乏标准化诊断。目前多以Bell分期≥Ⅱ作为诊断标准[2, 13-15],本研究中患儿均为Bell-Ⅱ期及以上的NEC。
本研究中早产儿NEC男女比例为1.8 : 1,出生胎龄29~31周者占47.1%,高峰纠正胎龄31~34周,出生体重1 001~2 500 g者占76.9%。性别对NEC的影响尚未见报道。有研究发现高收入国家NEC早产儿占90%,85%高发于胎龄 < 32周或出生体重 < 1 500 g者[16-17]。Kliegman等[18]报道48例早产儿发生NEC的高峰纠正胎龄为33~35周。而Neu等[19]报道61例胎龄24~36周NEC,高峰纠正胎龄为29~31周,这种变化可能与超早产儿出生率增加、管理策略变化及早期胃肠喂养有关[14, 20-21]。发生NEC的高峰纠正胎龄与早产儿视网膜病(retinopathy of prematurity, ROP)相似,提示NEC和ROP是一类发育成熟相关性疾病,随胎龄及出生体重降低发病率明显增加[22]。Nair等[21]报道NEC高发于中期早产儿(28~34周)。因中期早产儿是NICU主要住院人群,且中期早产儿母亲高血压疾病(29%)和SGA(15%)比极早期早产儿(≤28周)更常见(11.6% vs 4.6%)。
Sharma等[5]报道需要手术治疗的NEC约占全部病例的30%~40%,死亡率达50%。本研究中外科手术者占45.5%,病死率明显高于非手术组。经积极治疗CRP持续增高提示肠坏死。血小板降低不仅是严重感染的表现,也与肠道微循环障碍及弥散性血管内凝血(disseminated intravascular coagulation, DIC)有关,血小板进行性降低提示疾病恶化,需外科治疗或死亡风险高[5, 23-26]。Miner等[27]报道225例Ⅱ期及以上NEC,Ⅲ期者CRP明显升高,血小板明显降低。本研究结果显示,手术组及死亡组诊断NEC后CRP最高值明显高于非手术组及存活组,血小板最低值明显低于非手术组及存活组,提示该2项指标异常变化可能有助于判断预后。
本研究结果显示,死亡组出生时胎龄、出生体重、发生NEC时纠正胎龄及体重明显低于存活组,PDA发生率及布洛芬治疗率明显高于存活组。由于肺循环偷盗现象,PDA时体循环血量降低,消化道血流灌注减少,介质如肿瘤坏死因子-α、白介素-6等含量增加,这些因素与毒素进入血液促进炎症反应并形成恶性循环[15, 28]。Hammers等[29]对包括8 454例新生儿的27项研究进行Meta分析发现,1 731例暴露于布洛芬者NEC风险增加(OR=1.36,95%CI=1.08~1.71,P < 0.05)。本研究结果显示,布洛芬治疗PDA是NEC死亡的危险因素,可能与其促进动脉导管闭合作用的同时收缩肠道血管导致肠道缺血性损伤有关。
综上所述,早产儿NEC是威胁生命及影响生存质量的严重疾病。手术治疗、胎龄及出生体重低者病死率高;用于治疗PDA的布洛芬是早产儿NEC不良结局的危险因素。
[1] |
Moschopoulos C, Kratimenos P, Koutroulis I, et al. The neurodevelopmental perspective of surgical necrotizing enterocolitis:the role of the gut-brain axis[J]. Mediators Inflamm, 2018, 2018: 7456857. (0) |
[2] |
Neu J, Pammi M. Pathogenesis of NEC:impact of an altered intestinal microbiome[J]. Semin Perinatol, 2017, 41(1): 29-35. DOI:10.1053/j.semperi.2016.09.015 (0) |
[3] |
Neu J, Walker WA. Necrotizing enterocolitis[J]. N Engl J Med, 2011, 364(3): 255-264. DOI:10.1056/NEJMra1005408 (0) |
[4] |
Overman RE Jr, Criss CN, Gadepalli SK. Necrotizing enterocolitis in term neonates:a different disease process?[J]. J Pediatr Surg, 2019, 54(6): 1143-1146. DOI:10.1016/j.jpedsurg.2019.02.046 (0) |
[5] |
Sharma R, Hudak ML. A clinical perspective of necrotizing enterocolitis:past, present, and future[J]. Clin Perinatol, 2013, 40(1): 27-51. DOI:10.1016/j.clp.2012.12.012 (0) |
[6] |
Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis:new insights into pathogenesis and mechanisms[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(10): 590-600. DOI:10.1038/nrgastro.2016.119 (0) |
[7] |
中华医学会儿科学分会新生儿学组. 中国住院新生儿流行病学调查[J]. 中国当代儿科杂志, 2009, 11(1): 15-20. (0) |
[8] |
于论, 孙斌, 缪珀, 等. 82例新生儿坏死性小肠结肠炎预后危险因素分析[J]. 中国当代儿科杂志, 2013, 15(12): 1082-1085. (0) |
[9] |
Hau EM, Meyer SC, Berger S, et al. Gastrointestinal sequelae after surgery for necrotising enterocolitis:a systematic review and meta-analysis[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(3): F265-F273. DOI:10.1136/archdischild-2017-314435 (0) |
[10] |
Zani A, Pierro A. Necrotizing enterocolitis: controversies and challenges[J]. F1000Res, 2015, 4. pii: F1000 Faculty Rev-1373. https://www.ncbi.nlm.nih.gov/pubmed/26918125
(0) |
[11] |
Ferreira CH, Carmona F, Martinez FE. Prevalence, risk factors and outcomes associated with pulmonary hemorrhage in newborns[J]. J Pediatr (Rio J), 2014, 90(3): 316-322. DOI:10.1016/j.jped.2013.12.008 (0) |
[12] |
Rubarth LB, Quinn J. Respiratory development and respiratory distress syndrome[J]. Neonatal Netw, 2015, 34(4): 231-238. DOI:10.1891/0730-0832.34.4.231 (0) |
[13] |
Hackam DJ, Sodhi CP, Good M. New insights into necrotizing enterocolitis:from laboratory observation to personalized prevention and treatment[J]. J Pediatr Surg, 2019, 54(3): 398-404. DOI:10.1016/j.jpedsurg.2018.06.012 (0) |
[14] |
Sharma R, Hudak ML, Tepas JJ 3rd, et al. Impact of gestational age on the clinical presentation and surgical outcome of necrotizing enterocolitis[J]. J Perinatol, 2006, 26(6): 342-347. DOI:10.1038/sj.jp.7211510 (0) |
[15] |
Gordon PV, Swanson JR. Necrotizing enterocolitis is one disease with many origins and potential means of prevention[J]. Pathophysiology, 2014, 21(1): 13-19. DOI:10.1016/j.pathophys.2013.11.015 (0) |
[16] |
Battersby C, Santhalingam T, Costeloe K, et al. Incidence of neonatal necrotising enterocolitis in high-income countries:a systematic review[J]. Arch Dis Child Fetal Neonatal Ed, 2018, 103(2): F182-F189. DOI:10.1136/archdischild-2017-313880 (0) |
[17] |
Shulhan J, Dicken B, Hartling L, et al. Current knowledge of necrotizing enterocolitis in preterm infants and the impact of different types of enteral nutrition products[J]. Adv Nutr, 2017, 8(1): 80-91. DOI:10.3945/an.116.013193 (0) |
[18] |
Kliegman RM, Hack M, Jones P, et al. Epidemiologic study of necrotizing enterocolitis among low-birth-weight infants. Absence of identifiable risk factors[J]. J Pediatr, 1982, 100(3): 440-444. DOI:10.1016/S0022-3476(82)80456-3 (0) |
[19] |
Neu J, Pammi M. Necrotizing enterocolitis:the intestinal microbiome, metabolome and inflammatory mediators[J]. Semin Fetal Neonatal Med, 2018, 23(6): 400-405. DOI:10.1016/j.siny.2018.08.001 (0) |
[20] |
Ahle M, Drott P, Elfvin A, et al. Maternal, fetal and perinatal factors associated with necrotizing enterocolitis in Sweden. A national case-control study[J]. PLoS One, 2018, 13(3): e0194352. DOI:10.1371/journal.pone.0194352 (0) |
[21] |
Nair J, Longendyke R, Lakshminrusimha S. Necrotizing enterocolitis in moderate preterm infants[J]. Biomed Res Int, 2018, 2018: 4126245. (0) |
[22] |
Bak SY, Lee S, Park JH, et al. Analysis of the association between necrotizing enterocolitis and transfusion of red blood cell in very low birth weight preterm infants[J]. Korean J Pediatr, 2013, 56(3): 112-115. DOI:10.3345/kjp.2013.56.3.112 (0) |
[23] |
Coggins SA, Wynn JL, Weitkamp JH. Infectious causes of necrotizing enterocolitis[J]. Clin Perinatol, 2015, 42(1): 133-154, ⅸ . DOI:10.1016/j.clp.2014.10.012 (0) |
[24] |
Hurrell E, Kucerova E, Loughlin M, et al. Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae[J]. BMC Infect Dis, 2009, 9: 146. DOI:10.1186/1471-2334-9-146 (0) |
[25] |
Gordon PV, Swanson JR, MacQueen BC, et al. A critical question for NEC researchers:can we create a consensus definition of NEC that facilitates research progress?[J]. Semin Perinatol, 2017, 41(1): 7-14. DOI:10.1053/j.semperi.2016.09.013 (0) |
[26] |
Thuijls G, Derikx JP, van Wijck K, et al. Non-invasive markers for early diagnosis and determination of the severity of necrotizing enterocolitis[J]. Ann Surg, 2010, 251(6): 1174-1180. DOI:10.1097/SLA.0b013e3181d778c4 (0) |
[27] |
Miner CA, Fullmer S, Eggett DL, et al. Factors affecting the severity of necrotizing enterocolitis[J]. J Matern Fetal Neonatal Med, 2013, 26(17): 1715-1719. DOI:10.3109/14767058.2013.798283 (0) |
[28] |
Clyman RI, Couto J, Murphy GM. Patent ductus arteriosus:are current neonatal treatment options better or worse than no treatment at all?[J]. Semin Perinatol, 2012, 36(2): 123-129. DOI:10.1053/j.semperi.2011.09.022 (0) |
[29] |
Hammers AL, Sanchez-Ramos L, Kaunitz AM. Antenatal exposure to indomethacin increases the risk of severe intraventricular hemorrhage, necrotizing enterocolitis, and periventricular leukomalacia:a systematic review with metaanalysis[J]. Am J Obstet Gynecol, 2015, 212(4): 505. e1-e13. DOI:10.1016/j.ajog.2014.10.1091 (0) |