中国当代儿科杂志  2021, Vol. 23 Issue (4): 420-424  DOI: 10.7499/j.issn.1008-8830.2012021

引用本文  

邓全敏, 梁萍, 刘瀚旻. 儿童新型冠状病毒肺炎流行病学特点及机制分析[J]. 中国当代儿科杂志, 2021, 23(4): 420-424.
DENG Quan-Min, LIANG Ping, LIU Han-Min. Epidemiological features and mechanism of coronavirus disease 2019 in children[J]. Chinese Journal of Contemporary Pediatrics, 2021, 23(4): 420-424.

作者简介

邓全敏, 女, 硕士研究生, 主任医师。现工作单位: 德阳市人民医院儿科, 邮编: 618000

通信作者

刘瀚旻, 男, 主任医师, 教授。Email: liuhm@scu.edu.cn

文章历史

收稿日期:2020-12-06
接受日期:2021-02-01
儿童新型冠状病毒肺炎流行病学特点及机制分析
邓全敏, 梁萍, 刘瀚旻    
四川大学华西第二医院儿科/出生缺陷与相关妇儿疾病教育部重点实验室, 四川成都 610041
摘要:儿童中新型冠状病毒肺炎(COVID-19)的发生率、住院率和病死率均较成人低,而这种基于年龄的病情程度差异原因尚不明确,探讨儿童发病机制可帮助分析针对高危人群的治疗方法。人血管紧张素转化酶Ⅱ(ACE-2)是新型冠状病毒的主要受体,可限制血管紧张素2介导的肺毛细血管渗漏和炎症,对急性肺损伤具有保护作用,其表达随年龄增长而降低。儿童期定期的疫苗接种及较频繁的上呼吸道病毒感染导致规律的免疫激活,结合其强大的固有免疫系统功能,有助于COVID-19患儿感染早期的病毒清除。同时,儿童肺泡上皮细胞的再生和修复能力较强,有助于感染的早期恢复。另一方面,心肺基础疾病、肥胖和吸烟等危险因素在儿童中相对较少。居家隔离政策、学校及时关闭等社会因素对降低儿童感染率也起到保护作用。但是,伴有其他疾病如免疫缺陷的儿童可能属于高危人群,需给予密切关注。针对儿童COVID-19的免疫和保护机制也需要进一步研究。
关键词新型冠状病毒肺炎    人血管紧张素转化酶Ⅱ    发病机制    儿童    
Epidemiological features and mechanism of coronavirus disease 2019 in children
DENG Quan-Min, LIANG Ping, LIU Han-Min    
Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu 610041, China
Abstract: Compared with adults, children tend to have lower incidence rate, hospitalization rate, and mortality rate of coronavirus disease 2019 (COVID-19), while the cause of such age-based differences in disease severity remains unclear. An investigation of pathogenesis in children may help to analyze the therapies for the high-risk population. Human angiotensin-converting enzyme Ⅱ is the main receptor of severe acute respiratory syndrome coronavirus 2 and can limit pulmonary capillary leakage and inflammation mediated by angiotensin 2 and exert a protective effect against acute lung injury. Its expression decreases with age. Regular vaccination and frequent upper respiratory virus infection in children can lead to regular immune activation, and its combination with strong innate immunity can help to achieve virus clearance in the early stage of infection in children with COVID-19. Meanwhile, there are strong regeneration and repair abilities of alveolar epithelial cells in children, which may help with the early recovery of infection. In addition, risk factors, such as underlying cardiopulmonary diseases, obesity, and smoking, are relatively uncommon in children. Social factors, including home quarantine and timely closure of schools, may help to reduce the infection rate in children. However, children with immunodeficiency are a high-risk population and should be closely monitored. Further studies are needed to investigate the immune and protection mechanisms against COVID-19 in children.
Key words: Coronavirus disease 2019    Human angiotensin-converting enzyme Ⅱ    Pathogenesis    Child    

自2019年12月以来,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的广泛传播已导致当前世界范围内最大的公共卫生危机。截至2021年1月,SARS-CoV-2已造成逾2 000 000人数死亡[1]。在不同年龄层次患者中,SARS-CoV-2造成的急性呼吸道感染程度不同。被病毒感染的患儿通常只表现出类感冒症状,例如咳嗽、发烧和咽痛。在对107例感染儿童的流行病学研究发现,患儿年龄中位数为8岁,且无重症病例[2]。有研究显示,在44 762例感染者中,小于10岁和10~19岁人群分别只占总人群的1%[3]。在法国,有3.6%的感染者需要住院治疗,平均病死率为0.7%,其中20岁以下为0.001%,远低于80岁以上人群的10.1%[4]。据美国疾控中心数据显示,2020年3~12月,美国0~24岁感染SARS-CoV-2人群中,18~24岁人群占57.4%,而0~4岁人群仅占7.4%[5]。以5~17岁感染SARS-CoV-2人群为基准,0~4岁人群的住院率及病死率均升高了2倍,18~29岁人群的住院率及病死率分别升高了7倍及15倍,而85岁以上人群的住院率及病死率分别升高了80倍及7 900倍[6]。提示SARS-CoV-2在儿童中的阳性率及其引发的住院率及病死率均较成人低。

除了居家隔离政策、学校及时关闭等社交保护因素,为解释SARS-CoV-2在儿童与成人中的流行病学差异,已有多种生理及免疫学机制被提出[7]。本文意在通过综述SARS-CoV-2感染的免疫及生理机制,探讨儿童与成人感染之间差异出现的可能原因,思考可能存在于儿童中的针对SARS-CoV-2的保护机制,提出有关治疗方法和疫苗研究的建议。

1 SARS-CoV-2的致病机制

SARS-CoV-2属于乙型冠状病毒科(β亚群细小病毒科)的阳性单链RNA病毒,其遗传物质与SARS-CoV和中东呼吸综合征冠状病毒分别具有约79%和50%的序列同一性[8]。SARS-CoV-2的包膜刺突蛋白将人血管紧张素转化酶Ⅱ(angiotensin-converting enzyme Ⅱ, ACE-2)作为识别受体,通过跨膜丝氨酸蛋白酶2对ACE-2进行蛋白水解促进病毒进入细胞。在小鼠模型和儿科患者中,ACE-2可以抑制呼吸道病毒感染引起的严重肺损伤,在由败血症、酸吸入、SARS和致命的甲型H5N1禽流感病毒感染触发的严重急性肺损伤中起保护作用[9]。虽然ACE-2在鼻、口腔、鼻咽和口咽黏膜上皮等均被发现,但SARS-CoV-2优先感染肺上皮细胞[10-11]。ACE-2也是SARS-CoV-1的受体,而SARS-CoV-2对ACE-2的亲和力比SARS-CoV-1高约10~20倍,这可以解释SARS-CoV-2的较高感染性[12]

SARS-CoV-2感染后主要通过粪便、痰液排出体内。通过PCR检测发现呼吸道病毒排除时间在症状发作后持续长达63 d,比症状缓解更持久[13-15]。大量患者的粪便中也检测到SARS-CoV-2,但RNA水平通常低于呼吸道。在免疫抑制患者及合并症患者中,病毒排除时间延长,其中涉及的分子机制待进一步研究[16-17]

2 ACE-2在儿童中高表达

在健康状态下,ACE-2作为肾素-血管紧张素系统的一种反调节酶,可维持生理作用相反的血管紧张素2与血管紧张素1-7之间的稳态[18]。进入肺上皮细胞后,SARS-CoV-2下调ACE-2的表达,血管紧张素2水平升高,增加肺血管通透性和炎症反应,致使肺损伤恶化[19-21]。呼吸道合胞病毒(RSV)感染和禽流感肺炎也可见到血管紧张素2水平升高[9, 22]。而ACE-2水平在老年和伴合并症(如高血压、糖尿病)患者中降低[18, 23]。儿童中的高ACE-2表达量可能对感染COVID-19的儿童具有保护作用,因此与老年患者相比,儿童患者的病情严重程度较轻。

然而ACE-2作为SARS-CoV-2在肺上皮细胞的主要受体,既对炎症介导的肺损伤有保护作用,亦可通过介导病毒入侵而增强肺损伤。因此,需进一步研究SARS-CoV-2感染患儿下呼吸道中ACE-2及血液中血管紧张素2表达量及活性水平。

3 SARS-CoV-2感染后的免疫反应

临床免疫学研究表明,COVID-19在病毒进入人体后可分为3个阶段:(1)类流感期,病毒载量高;(2)关键期,病毒载量降低,炎症反应加快,出现肺部和终末器官损伤;(3)恢复期。重症患者的病毒载量显著高于轻症患者(约60倍)[21]。鼻咽和气管内吸出物中的SARS-CoV-2滴度从症状开始后第1周开始逐渐下降[14-15, 24-25]。重症患者病毒滴度下降幅度较小且持续时间较长[14]。炎症因子包括白细胞介素(IL)-2、IL-6、IL-7、IL-10、粒细胞集落刺激因子、巨噬细胞炎症蛋白和肿瘤坏死因子(TNF)-α等的水平在重症患者中高于轻症[26-27]。与轻症组相比,重症组的T细胞、辅助T细胞和记忆辅助T细胞数量减少,幼稚辅助T细胞增加[28]。持续的高病毒滴度,免疫系统功能紊乱,细胞炎症因子水平升高,表明关键期肺损伤和多器官功能障碍是由于病毒介导的细胞病变作用和免疫介导的损伤的联合作用。

目前尚无COVID-19儿童的病毒载量和细胞因子水平的研究。与成人相比,淋巴细胞减少症(3.5%)和C反应蛋白升高(19.7%)等免疫学表现在儿童中不常见(成人中分别为47%和 > 50%)。大多数儿童在类流感期后会康复,而没有进入关键阶段[29]

4 儿童保护性免疫机制

在最初的抗原刺激(感染或疫苗接种)后,先天免疫细胞通过代谢重编码和表观遗传变化至更活化的状态,例如增加IL-1β、IL-6和TNF-α等细胞因子的转录,从而调节髓系和单核系祖细胞及局部免疫细胞(肺巨噬细胞和树突状细胞)的水平[30-31]。据推测,卡介苗接种可以诱导CD4+CD25+T细胞产生IL-10,常规接种的国家的COVID-19的发病率和病死率较低[32-33]。实验表明,用活腺病毒疫苗载体感染小鼠可诱导自我维持的记忆性肺巨噬细胞。针对麻疹和小儿麻痹症的活疫苗接种可改善发展中国家儿童病死率[34]。常规活疫苗和频繁的病毒感染导致的经常受训的免疫系统可能是儿童抗SARS-CoV-2感染的重要保护机制。

5 免疫系统在发育与衰老中的变化

婴幼儿应对感染刺激主要由固有免疫系统介导,适应性免疫系统的作用较弱。一项针对6~9、22~26和48~60月龄组儿童的研究显示,经Toll样受体刺激后,低龄组释放更多的细胞因子IL-6、IL-8、IL-10和TNF-α,提示更强大的固有免疫系统。随着年龄的增长,CD4+幼稚T细胞的百分比降低,而记忆T细胞的百分比升高[35]。在COVID-19的儿童患者中,年龄小于1岁的儿童占最高的住院比例(15%~62%),而1~17岁年龄段的住院患者比例较低(4%~14%)[6]。适应性免疫系统不足可能是导致婴幼儿SARS-CoV-2感染病情较年长儿重的原因。来自于母体的抗体最常见的靶向病毒是腺病毒C、巨细胞病毒V、EB病毒、单纯疱疹病毒-1、鼻病毒A等,因此在SARS-CoV-2等新型病毒感染时,保护新生儿和婴幼儿的母体抗体不太可能对其起作用[36]

衰老的免疫系统使老年人患急性下呼吸道感染的几率和严重程度都增加。固有和适应性免疫系统都随着衰老发生相应改变,包括循环系统中单核细胞及树突状细胞数量改变、嗜中性粒细胞的吞噬活性降低及T细胞衰竭等。SARS-CoV-2感染刺激固有免疫系统产生细胞因子风暴,被衰老免疫细胞发出的炎症信号增强[37]。过度的促炎症反应使得从固有免疫到适应性免疫反应的转换延迟或缺乏[19]。免疫系统过度活跃似乎对COVID-19感染最严重后果的发生至关重要。与衰老相关的相对免疫功能障碍,使老年人在RSV或其他季节性流感病毒入侵时感染更严重[38]。SARS幸存者的基因表达谱提升适应性免疫系统应答,而死亡患者则表现出干扰素刺激基因编码的促炎性细胞因子水平持续升高[39]

6 儿童肺修复和再生潜能较强

随着年龄的增长,肺的再生潜能逐渐减弱[40]。流感病毒感染后的幼年(2~3个月)和老年(16~18个月)小鼠中,后者出现更严重的肺泡损伤,且伴有Ⅱ型肺泡上皮细胞和支气管上皮细胞的再生延迟[41]。诱导的急性肺损伤使得衰老小鼠模型的炎症反应增加,且自身合成肺表面活性剂功能障碍,但年幼小鼠自身合成表面活性剂功能并未受影响[42]。儿童良好的肺再生和修复能力使其感染后严重程度较低、恢复更快。

7 儿童伴有合并症较少

伴有心肺疾病、肥胖等合并症的COVID-19患者病死率增加[43-44]。吸烟者中ACE-2的表达上调也可能导致呼吸道感染的不良后果。虽然这些情况多数在儿童中不常见,但在RSV引起的急性下呼吸道感染患儿中,早产、心脏病并存和反复喘息与患儿病死率增加呈正相关[45]。武汉一项针对115例患儿的研究中,仅有的3例重症患儿均伴有合并症,如肠套叠、肾积水和白血病等[46]。同样,死于流感病毒感染的患儿中,至少合并1种高危因素的患儿占57%,包括神经系统疾病(33%),肺部疾病(26%,哮喘16%),遗传疾病(12%)和心脏疾病(11%)[47]。因此,应将婴幼儿和患合并症的儿童视为COVID-19的高危人群。

8 展望

虽然儿童中COVID-19的检测阳性率明显低于成人,但数据显示18岁以下确诊人数达120万以上[5]。为了更好地了解疾病进程,需要进一步评估儿童在不同年龄组和呼吸系统中不同部位的ACE-2及其他潜在受体的表达,详细评估儿童的病毒载量和免疫应答(血液和呼吸道灌洗液细胞免疫表型及细胞因子水平)的趋势,积极展开肺活检、对死亡患儿的尸体解剖以定义肺损伤的模式,加快有效抗病毒药物的研发。随着疫苗的逐步投入使用,对儿童接种疫苗后的机体反应、免疫系统监测及预防效果也有待研究,可为促进有效疫苗的研发提供帮助。

9 结论

COVID-19已对全世界人们的公共健康造成威胁。儿童与成人相比,SARS-CoV-2阳性检测率、住院率及病死率较低,可能涉及的免疫及生理机制包括ACE2表达差异、免疫保护(常规疫苗接种)、肺损伤再生和修复能力强,以及较少合并症等。

参考文献
[1]
World Health Organization. WHO coronavirus disease (COVID-19) dashboard[EB/OL]. [2020-11-17]. https://covid19.who.int. (0)
[2]
张一, 陶舒曼, 刘蒙, 等. 疫情早期107例儿童新型冠状病毒肺炎流行病学特征分析[J]. 中国学校卫生, 2020, 41(5): 654-656. (0)
[3]
Wu ZY, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019(COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention[J]. JAMA, 2020, 323(13): 1239-1242. DOI:10.1001/jama.2020.2648 (0)
[4]
Salje H, Tran Kiem C, Lefrancq N, et al. Estimating the burden of SARS-CoV-2 in France[J]. Science, 2020, 369(6500): 208-211. DOI:10.1126/science.abc3517 (0)
[5]
Leidman E, Duca LM, Omura JD, et al. COVID-19 trends among persons aged 0-24 years-United States, March 1-December 12, 2020[J]. MMWR Morb Mortal Wkly Rep, 2021, 70(3): 88-94. DOI:10.15585/mmwr.mm7003e1 (0)
[6]
Center for Disease Control and Prevention. Risk for COVID-19 infection, hospitalization, and death by age group[EB/OL]. (2021-02-18)[2021-03-18]. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html. (0)
[7]
Lee PI, Hu YL, Chen PY, et al. Are children less susceptible to COVID-19?[J]. J Microbiol Immunol Infect, 2020, 53(3): 371-372. DOI:10.1016/j.jmii.2020.02.011 (0)
[8]
Lu RJ, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395(10224): 565-574. DOI:10.1016/S0140-6736(20)30251-8 (0)
[9]
Gu HJ, Xie ZD, Li TL, et al. Angiotensin-converting enzyme 2 inhibits lung injury induced by respiratory syncytial virus[J]. Sci Rep, 2016, 6: 19840. DOI:10.1038/srep19840 (0)
[10]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e8. DOI:10.1016/j.cell.2020.02.052 (0)
[11]
Song RF, Preston G, Yosypiv IV. Ontogeny of angiotensin-converting enzyme 2[J]. Pediatr Res, 2012, 71(1): 13-19. DOI:10.1038/pr.2011.7 (0)
[12]
Wang DW, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11): 1061-1069. DOI:10.1001/jama.2020.1585 (0)
[13]
Liu WD, Chang SY, Wang JT, et al. Prolonged virus shedding even after seroconversion in a patient with COVID-19[J]. J Infect, 2020, 81(2): 318-356. (0)
[14]
To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2:an observational cohort study[J]. Lancet Infect Dis, 2020, 20(5): 565-574. DOI:10.1016/S1473-3099(20)30196-1 (0)
[15]
Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019[J]. Nature, 2020, 581(7809): 465-469. DOI:10.1038/s41586-020-2196-x (0)
[16]
Liu W, Tang F, Fontanet A, et al. Long-term SARS coronavirus excretion from patient cohort, China[J]. Emerg Infect Dis, 2004, 10(10): 1841-1843. DOI:10.3201/eid1010.040297 (0)
[17]
van der Vries E, Stittelaar KJ, van Amerongen G, et al. Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets[J]. PLoS Pathog, 2013, 9(5): e1003343. DOI:10.1371/journal.ppat.1003343 (0)
[18]
Guo JY, Huang Z, Lin L, et al. Coronavirus disease 2019(COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection[J]. J Am Heart Assoc, 2020, 9(7): e016219. (0)
[19]
de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses[J]. Nat Rev Microbiol, 2016, 14(8): 523-534. DOI:10.1038/nrmicro.2016.81 (0)
[20]
Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure[J]. Nature, 2005, 436(7047): 112-116. DOI:10.1038/nature03712 (0)
[21]
Liu Y, Yan LM, Wan LG, et al. Viral dynamics in mild and severe cases of COVID-19[J]. Lancet Infect Dis, 2020, 20(6): 656-657. DOI:10.1016/S1473-3099(20)30232-2 (0)
[22]
Zou Z, Yan YW, Shu YL, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections[J]. Nat Commun, 2014, 5: 3594. DOI:10.1038/ncomms4594 (0)
[23]
Xie XD, Chen JZ, Wang XX, et al. Age- and gender-related difference of ACE2 expression in rat lung[J]. Life Sci, 2006, 78(19): 2166-2171. DOI:10.1016/j.lfs.2005.09.038 (0)
[24]
Liu YX, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury[J]. Sci China Life Sci, 2020, 63(3): 364-374. DOI:10.1007/s11427-020-1643-8 (0)
[25]
Zou LR, Feng R, Huang MX, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients[J]. N Engl J Med, 2020, 382(12): 1177-1179. DOI:10.1056/NEJMc2001737 (0)
[26]
Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506. DOI:10.1016/S0140-6736(20)30183-5 (0)
[27]
Tan MK, Liu YX, Zhou RP, et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China[J]. Immunology, 2020, 160(3): 261-268. DOI:10.1111/imm.13223 (0)
[28]
Qin C, Zhou LQ, Hu ZW, et al. Dysregulation of immune response in patients with coronavirus 2019(COVID-19) in Wuhan, China[J]. Clin Infect Dis, 2020, 71(15): 762-768. DOI:10.1093/cid/ciaa248 (0)
[29]
Lu XX, Zhang LQ, Du H, et al. SARS-CoV-2 infection in children[J]. N Engl J Med, 2020, 382(17): 1663-1665. DOI:10.1056/NEJMc2005073 (0)
[30]
Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease[J]. Nat Rev Immunol, 2020, 20(6): 375-388. DOI:10.1038/s41577-020-0285-6 (0)
[31]
Yao YS, Jeyanathan M, Haddadi S, et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity[J]. Cell, 2018, 175(6): 1634-1650.e17. DOI:10.1016/j.cell.2018.09.042 (0)
[32]
Akkoc T, Aydogan M, Yildiz A, et al. Neonatal BCG vaccination induces IL-10 production by CD4+CD25+ T cells[J]. Pediatr Allergy Immunol, 2010, 21(7): 1059-1063. DOI:10.1111/j.1399-3038.2010.01051.x (0)
[33]
Kleen TO, Galdon AA, MacDonald AS, et al. Mitigating coronavirus induced dysfunctional immunity for at-risk populations in COVID-19:trained immunity, BCG and "new old friends"[J]. Front Immunol, 2020, 11: 2059. DOI:10.3389/fimmu.2020.02059 (0)
[34]
Sankoh O, Welaga P, Debpuur C, et al. The non-specific effects of vaccines and other childhood interventions: the contribution of INDEPTH Health and Demographic Surveillance Systems[J]. Int J Epidemiol, 2014, 43(3): 645-653. DOI:10.1093/ije/dyu101 (0)
[35]
Teran R, Mitre E, Vaca M, et al. Immune system development during early childhood in tropical Latin America: evidence for the age-dependent down regulation of the innate immune response[J]. Clin Immunol, 2011, 138(3): 299-310. DOI:10.1016/j.clim.2010.12.011 (0)
[36]
Pou C, Nkulikiyimfura D, Henckel E, et al. The repertoire of maternal anti-viral antibodies in human newborns[J]. Nat Med, 2019, 25(4): 591-596. DOI:10.1038/s41591-019-0392-8 (0)
[37]
Oh SJ, Lee JK, Shin OS. Aging and the immune system: the impact of immunosenescence on viral infection, immunity and vaccine immunogenicity[J]. Immune Netw, 2019, 19(6): e37. DOI:10.4110/in.2019.19.e37 (0)
[38]
Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age[J]. Proc Biol Sci, 2015, 282(1821): 20143085. (0)
[39]
Cameron MJ, Ran L, Xu LL, et al. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome[J]. J Virol, 2007, 81(16): 8692-8706. DOI:10.1128/JVI.00527-07 (0)
[40]
Navarro S, Driscoll B. Regeneration of the aging lung: a mini-review[J]. Gerontology, 2017, 63(3): 270-280. DOI:10.1159/000451081 (0)
[41]
Yin L, Zheng DH, Limmon GV, et al. Aging exacerbates damage and delays repair of alveolar epithelia following influenza viral pneumonia[J]. Respir Res, 2014, 15(1): 116. DOI:10.1186/s12931-014-0116-z (0)
[42]
Yazicioglu T, Mühlfeld C, Autilio C, et al. Aging impairs alveolar epithelial type Ⅱ cell function in acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 319(5): L755-L769. DOI:10.1152/ajplung.00093.2020 (0)
[43]
Du RH, Liang LR, Yang CQ, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2[J]. Eur Respir J, 2020, 56(3): 2002961. DOI:10.1183/13993003.02961-2020 (0)
[44]
Petrilli CM, Jones SN, Yang J, et al. Factors associated with hospitalization and critical illness among 4, 103 patients with COVID-19 disease in New York City[J]. 2020. DOI: 10.1101/2020.04.08.20057794. Epub ahead of print. (0)
[45]
Geoghegan S, Erviti A, Caballero MT, et al. Mortality due to respiratory syncytial virus. Burden and risk factors[J]. Am J Respir Crit Care Med, 2017, 195(1): 96-103. DOI:10.1164/rccm.201603-0658OC (0)
[46]
马耀玲, 夏胜英, 王敏, 等. 115例新型冠状病毒感染儿童的临床特点分析[J]. 中国当代儿科杂志, 2020, 22(4): 290-293. (0)
[47]
Wong KK, Jain S, Blanton L, et al. Influenza-associated pediatric deaths in the United States, 2004-2012[J]. Pediatrics, 2013, 132(5): 796-804. DOI:10.1542/peds.2013-1493 (0)