Clinical features and LAMA2 mutations of patients with congenital muscular dystrophy type 1A: a case report and literature review

GUO Li, TANG Wen-Min, SONG Yuan-Zong

Chinese Journal of Contemporary Pediatrics ›› 2020, Vol. 22 ›› Issue (6) : 608-613.

PDF(2216 KB)
PDF(2216 KB)
Chinese Journal of Contemporary Pediatrics ›› 2020, Vol. 22 ›› Issue (6) : 608-613. DOI: 10.7499/j.issn.1008-8830.2001102
CLINICAL RESEARCH

Clinical features and LAMA2 mutations of patients with congenital muscular dystrophy type 1A: a case report and literature review

  • GUO Li, TANG Wen-Min, SONG Yuan-Zong
Author information +
History +

Abstract

Biallelic pathogenic mutations of the LAMA2 gene result in congenital muscular dystrophy type 1A (CMD1A). The patient in this study was a boy aged 19 months, with the clinical manifestations of motor development delay and increases in the serum levels of creatine kinase, aminotransferases, and lactate dehydrogenase. Genetic analysis showed that the patient had compound heterozygous mutations in the LAMA2 gene, among which c.7147C > T (p.Ala2383Ter) from his mother was a known nonsense mutation, and c.8551_8552insAA (p.Ile2852ArgfsTer2) from his father was a frameshift mutation which had never been reported before and was identified as a pathogenic mutation based on the ACMG guideline. The boy was confirmed with CMD1A. A literature review of related articles in China and overseas revealed that most children with CMD1A have disease onset within 6 months after birth, with the features of motor developmental delay, elevated serum creatine kinase, and white matter impairment on imaging examination. The mutations of the LAMA2 gene have remarkable heterogeneity, the majority of which are null mutations. There are no specific treatment methods for CMD1A currently, and children with CMD1A usually have a poor long-term prognosis.

Key words

Congenital muscular dystrophy type 1A / LAMA2 gene / Mutation / Child

Cite this article

Download Citations
GUO Li, TANG Wen-Min, SONG Yuan-Zong. Clinical features and LAMA2 mutations of patients with congenital muscular dystrophy type 1A: a case report and literature review[J]. Chinese Journal of Contemporary Pediatrics. 2020, 22(6): 608-613 https://doi.org/10.7499/j.issn.1008-8830.2001102

References

[1] 葛琳, 熊晖. Merosin蛋白缺陷型先天性肌营养不良研究进展[J]. 中华儿科杂志, 2018, 56(3):234-236.
[2] Bönnemann CG, Wang CH, Quijano-Roy S, et al. Diagnostic approach to the congenital muscular dystrophies[J]. Neuromuscul Disord, 2014, 24(4):289-311.
[3] Falsaperla R, Praticò AD, Ruggieri M, et al. Congenital muscular dystrophy:from muscle to brain[J]. Ital J Pediatr, 2016, 42(1):78.
[4] Zhang X, Vuolteenaho R, Tryggvason K. Structure of the human laminin alpha2-chain gene (LAMA2), which is affected in congenital muscular dystrophy[J]. J Biol Chem, 1996, 271(44):27664-27669.
[5] Campbell KP. Three muscular dystrophies:loss of cytoskeleton-extracellular matrix linkage[J]. Cell, 1995, 80(5):675-679.
[6] Muntoni F, Voit T. The congenital muscular dystrophies in 2004:a century of exciting progress[J]. Neuromuscul Disord, 2004, 14(10):635-649.
[7] Sparks SE, Quijano-Roy S, Harper A, et al. Congenital muscular dystrophy overview-archived chapter, for historical reference only[EB/OL]. GeneReviews®. (2012-08-23)[2020-01-18]. https://www.ncbi.nlm.nih.gov/books/NBK1291/pdf/Bookshelf_NBK1291.pdf.
[8] 王硕, 熊晖, 罗静, 等. 一个先天性肌营养不良1A型家系的临床、分子病理及遗传学研究[J]. 中华医学遗传学杂志, 2010, 27(1):13-17.
[9] 张晓莉, 牛国辉, 杜开先, 等. 先天性肌营养不良1A型颅脑磁共振成像和基因检测诊断分析:附两例报道及文献复习[J]. 中国全科医学, 2014, 17(24):2847-2850.
[10] 杨璐, 王爽, 熊晖, 等. 基因检测诊断LAMA2基因突变所致先天性肌营养不良1例[J].中华实用儿科临床杂志, 2015, 30(12):952-953.
[11] 范燕彬, 傅晓娜, 葛琳, 等. 先天性肌营养不良的临床表现和产前诊断[J]. 中华围产医学杂志, 2017, 20(9):669-678.
[12] 江士远, 向娜. 先天性肌营养不良1A型1例临床与基因分析[J]. 临床儿科杂志, 2017, 35(5):369-371.
[13] 朱艳慧, 喻长顺, 王晓春, 等. 层黏连蛋白α2缺失型先天性肌营养不良患儿一例LAMA2基因突变分析[J]. 中华临床医师杂志(电子版), 2013, 7(13):5871-5874.
[14] 程映, 梁红, 蔡娜莉, 等. 微绒毛包涵体病一家系临床特点和MYO5B基因突变分析[J]. 中国当代儿科杂志, 2017, 19(9):968-974.
[15] 邓梅, 林伟霞, 郭丽, 等. 线粒体DNA耗竭综合征1例临床特点和DGUOK基因突变分析[J]. 中国当代儿科杂志, 2016, 18(6):545-550.
[16] 黄大桂, 刘佳佳, 郭丽, 等. 关节挛缩、肾功能不全和胆汁淤积综合征一家系临床特点及VPS33B基因突变分析[J]. 中国当代儿科杂志, 2017, 19(10):1077-1082.
[17] Pegoraro E, Fanin M, Trevisan CP, et al. A novel laminin alpha2 isoform in severe laminin alpha2 deficient congenital muscular dystrophy[J]. Neurology, 2000, 55(8):1128-1134.
[18] Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5):405-424.
[19] He Z, Luo X, Liang L, et al. Merosin-deficient congenital muscular dystrophy type 1A:a case report[J]. Exp Ther Med, 2013, 6(5):1233-1236.
[20] Ge L, Liu A, Gao K, et al. Deletion of exon 4 in LAMA2 is the most frequent mutation in Chinese patients with laminin α2-related muscular dystrophy[J]. Sci Rep, 2018, 8(1):14989.
[21] 梁晓平, 王爽, 张巍, 等. LAMA2基因突变致先天性肌营养不良的周围神经损害研究[J]. 中华儿科杂志, 2017, 55(2):95-99.
[22] Hashemi-Gorji F, Yassaee VR, Dashti P, et al. Novel LAMA2 gene mutations associated with merosin-deficient congenital muscular dystrophy[J]. Iran Biomed J, 2018, 22(6):408-414.
[23] Incecik F, Herguner OM, Ceylaner S, et al. Merosin-negative congenital muscular dystrophy:report of five cases[J]. J Pediatr Neurosci, 2015, 10(4):346-349.
[24] Dimova I, Kremensky I. LAMA2 congenital muscle dystrophy:a novel pathogenic mutation in bulgarian patient[J]. Case Rep Genet, 2018, 2018:3028145.
[25] Di Blasi C, Bellafiore E, Salih MA, et al. Variable disease severity in Saudi Arabian and Sudanese families with c.3924+2T > C mutation of LAMA2[J]. BMC Res Notes, 2011, 4:534.
[26] Andrade RC, Nevado J, de Faria Domingues de Lima MA, et al. Segmental uniparental isodisomy of chromosome 6 causing transient diabetes mellitus and merosin-deficient congenital muscular dystrophy[J]. Am J Med Genet A, 2014, 164A(11):2908-2913.
[27] Beytía Mde L, Dekomien G, Hoffjan S, et al. High creatine kinase levels and white matter changes:clinical and genetic spectrum of congenital muscular dystrophies with laminin alpha-2 deficiency[J]. Mol Cell Probes, 2014, 28(4):118-122.
[28] Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage[J]. Clin Chem Lab Med, 2010, 48(6):757-767.
[29] Jones KJ, Morgan G, Johnston H, et al. The expanding phenotype of laminin alpha2 chain (merosin) abnormalities:case series and review[J]. J Med Genet, 2001, 38(10):649-657.
[30] Taratuto AL, Lubieniecki F, Díaz D, et al. Merosin-deficient congenital muscular dystrophy associated with abnormal cerebral cortical gyration:an autopsy study[J]. Neuromuscul Disord, 1999, 9(2):86-94.
[31] Farina L, Morandi L, Milanesi I, et al. Congenital muscular dystrophy with merosin deficiency:MRI findings in five patients[J]. Neuroradiology, 1998, 40(12):807-811.
[32] Korones DN, Brown MR, Palis J. "Liver function tests" are not always tests of liver function[J]. Am J Hematol, 2001, 66(1):46-48.
[33] 常杏芝, 袁云, 秦炯. 以转氨酶升高为主要临床表现的隐匿性肌肉病分析[J]. 中国医刊, 2006, 41(4):42-44.
[34] Farrar MA, Kiernan MC. The genetics of spinal muscular atrophy:progress and challenges[J]. Neurotherapeutics, 2015, 12(2):290-302.
[35] Suthar R, Sankhyan N. Duchenne muscular dystrophy:a practice update[J]. Indian J Pediatr, 2018, 85(4):276-281.
[36] Rooney JE, Knapp JR, Hodges BL, et al. Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy[J]. Am J Pathol, 2012, 180(4):1593-1602.
[37] Gawlik KI, Durbeej M. Skeletal muscle laminin and MDC1A:pathogenesis and treatment strategies[J]. Skelet Muscle, 2011, 1(1):9.

PDF(2216 KB)

Accesses

Citation

Detail

Sections
Recommended

/