Construction of early risk prediction models for bronchopulmonary dysplasia in preterm infants

ZHANG Ru, XU Fa-Lin, LI Wen-Li, QIN Fan-Yue, JIN Xin-Yun, ZHANG Yi, ZHANG Chen, ZHU Chu

Chinese Journal of Contemporary Pediatrics ›› 2021, Vol. 23 ›› Issue (10) : 994-1001.

PDF(651 KB)
PDF(651 KB)
Chinese Journal of Contemporary Pediatrics ›› 2021, Vol. 23 ›› Issue (10) : 994-1001. DOI: 10.7499/j.issn.1008-8830.2107035
CLINICAL RESEARCH

Construction of early risk prediction models for bronchopulmonary dysplasia in preterm infants

  • ZHANG Ru, XU Fa-Lin, LI Wen-Li, QIN Fan-Yue, JIN Xin-Yun, ZHANG Yi, ZHANG Chen, ZHU Chu
Author information +
History +

Abstract

Objective To construct risk prediction models for bronchopulmonary dysplasia (BPD) in preterm infants on postnatal days 3, 7, and 14. Methods A retrospective analysis was performed on the medical data of 414 preterm infants, with a gestational age of <32 weeks and a birth weight (BW) of <1 500 g, who were admitted to the neonatal intensive care unit from July 2019 to April 2021. According to the diagnostic criteria for BPD revised in 2018, they were divided into a BPD group with 98 infants and a non-BPD group with 316 infants. The two groups were compared in terms of general status, laboratory examination results, treatment, and complications. The logistic regression model was used to identify the variables associated with BPD. The receiver operating characteristic (ROC) curve was used to evaluate the predictive value of models. Results The logistic regression analysis showed that BW, asphyxia, grade III-IV respiratory distress syndrome (RDS), acute chorioamnionitis, interstitial pneumonia, fraction of inspired oxygen (FiO2), and respiratory support mode were the main risk factors for BPD (P<0.05). The prediction models on postnatal days 7 and 14 were established as logit (P7) =-2.049-0.004×BW (g) +0.686×asphyxia (no=0, yes=1) +1.842×grade III-IV RDS (no=0, yes=1) +0.906×acute chorioamnionitis (no=0, yes=1) +0.506×interstitial pneumonia (no=0, yes=1) +0.116×FiO2 (%) +0.816×respiratory support mode (no=0, nasal tube=1, nasal continuous positive airway pressure=2, conventional mechanical ventilation=3, high-frequency mechanical ventilation=4) and logit (P14) =-1.200-0.004×BW (g) +0.723×asphyxia+2.081×grade III-IV RDS+0.799×acute chorioamnionitis+0.601×interstitial pneumonia+0.074×FiO2 (%) +0.800×respiratory support mode, with an area under the ROC curve (AUC) of 0.876 and 0.880, respectively, which was significantly larger than the AUC of the prediction model on postnatal day 3 (P<0.05). Conclusions BW, asphyxia, grade III-IV RDS, acute chorioamnionitis, interstitial pneumonia, FiO2, and respiratory support mode are the main risk factors for BPD and can be used to construct risk prediction models. The prediction models on postnatal days 7 and 14 can effectively predict BPD.

Key words

Bronchopulmonary dysplasia / Risk factor / Prediction model / Preterm infant

Cite this article

Download Citations
ZHANG Ru, XU Fa-Lin, LI Wen-Li, QIN Fan-Yue, JIN Xin-Yun, ZHANG Yi, ZHANG Chen, ZHU Chu. Construction of early risk prediction models for bronchopulmonary dysplasia in preterm infants[J]. Chinese Journal of Contemporary Pediatrics. 2021, 23(10): 994-1001 https://doi.org/10.7499/j.issn.1008-8830.2107035

References

1 Northway WHJ, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia[J]. N Engl J Med, 1967, 276(7): 357-368. PMID: 5334613. DOI: 10.1056/NEJM196702162760701.
2 Collins JJP, Tibboel D, de Kleer IM, et al. The future of bronchopulmonary dysplasia: emerging pathophysiological concepts and potential new avenues of treatment[J]. Front Med (Lausanne), 2017, 4: 61. PMID: 28589122. PMCID: PMC5439211. DOI: 10.3389/fmed.2017.00061.
3 王陈红, 沈晓霞, 陈鸣艳, 等. 不同诊断标准下早产儿支气管肺发育不良诊断及预后分析[J]. 中华儿科杂志, 2020, 58(5): 381-386. PMID: 32392953. DOI: 10.3760/cma.j.cn112140-20200108-00017.
4 Sun L, Zhang H, Bao YY, et al. Long-term outcomes of bronchopulmonary dysplasia under two different diagnostic criteria: a retrospective cohort study at a Chinese tertiary center[J]. Front Pediatr, 2021, 9: 648972. PMID: 33859971. PMCID: PMC8042161. DOI: 10.3389/fped.2021.648972.
5 Valenzuela-Stutman D, Marshall G, Tapia JL, et al. Bronchopulmonary dysplasia: risk prediction models for very-low- birth-weight infants[J]. J Perinatol, 2019, 39(9): 1275-1281. PMID: 31337853. DOI: 10.1038/s41372-019-0430-x.
6 Shim SY, Yun JY, Cho SJ, et al. The prediction of bronchopulmonary dysplasia in very low birth weight infants through clinical indicators within 1 hour of delivery[J]. J Korean Med Sci, 2021, 36(11): e81. PMID: 33754511. PMCID: PMC7985290. DOI: 10.3346/jkms.2021.36.e81.
7 Kim YD, Kim EAR, Kim KS, et al. Scoring method for early prediction of neonatal chronic lung disease using modified respiratory parameters[J]. J Korean Med Sci, 2005, 20(3): 397-401. PMID: 15953859. PMCID: PMC2782193. DOI: 10.3346/jkms.2005.20.3.397.
8 Laughon MM, Langer JC, Bose CL, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants[J]. Am J Respir Crit Care Med, 2011, 183(12): 1715-1722. PMID: 21471086. PMCID: PMC3136997. DOI: 10.1164/rccm.201101-0055OC.
9 Ding L, Wang HW, Geng HF, et al. Prediction of bronchopulmonary dysplasia in preterm infants using postnatal risk factors[J]. Front Pediatr, 2020, 8: 349. PMID: 32676490. PMCID: PMC7333538. DOI: 10.3389/fped.2020.00349.
10 Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop[J]. J Pediatr, 2018, 197: 300-308. PMID: 29551318. PMCID: PMC5970962. DOI: 10.1016/j.jpeds.2018.01.043.
11 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 5版. 北京: 人民卫生出版社, 2019.
12 石丹勤, 张华. 高危妊娠中急性绒毛膜羊膜炎对妊娠结局的影响评价[J]. 当代医学, 2020, 26(13): 70-72. DOI: 10.3969/j.issn.1009-4393.2020.13.030.
13 唐宇平, 韩欢, 应豪. "2019 SOGC临床实践指南: 硫酸镁对胎儿的神经保护作用"解读[J]. 国际妇产科学杂志, 2019, 46(4): 440-443. DOI: 10.3969/j.issn.1674-1870.2019.04.019.
14 陈克正. 新生儿肺出血的诊断与治疗方案[J]. 中华儿科杂志, 2001, 39(4): 248. DOI: 10.3760/j.issn:0578-1310.2001.04.018.
15 陆丹芳, 刘云峰, 童笑梅. 早产儿动脉导管未闭的临床特点及其心脏血流动力学研究[J]. 中华儿科杂志, 2015, 53(3): 187-193. DOI: 10.3760/cma.j.issn.0578-1310.2015.03.007.
16 任艳丽, 孔祥永, 杜志方, 等. 早产儿支气管肺发育不良危险因素前瞻性研究[J]. 中华实用儿科临床杂志, 2015, 30(10): 757-760. DOI: 10.3760/cma.j.issn.2095-428X.2015.10.010.
17 Tapia JL, Agost D, Alegria A, et al. Bronchopulmonary dysplasia: incidence, risk factors and resource utilization in a population of South American very low birth weight infants[J]. J Pediatr (Rio J), 2006, 82(1): 15-20. PMID: 16532142. DOI: 10.2223/JPED.1431.
18 Villamor-Martinez E, álvarez-Fuente M, Ghazi AMT, et al. Association of chorioamnionitis with bronchopulmonary dysplasia among preterm infants: a systematic review, meta-analysis, and metaregression[J]. JAMA Netw Open, 2019, 2(11): e1914611. PMID: 31693123. PMCID: PMC6865274. DOI: 10.1001/jamanetworkopen.2019.14611.
19 Kim HR, Kim JY, Yun BL, et al. Interstitial pneumonia pattern on day 7 chest radiograph predicts bronchopulmonary dysplasia in preterm infants[J]. BMC Pediatr, 2017, 17(1): 125. PMID: 28506211. PMCID: PMC5433188. DOI: 10.1186/s12887-017-0881-1.
20 Glaser K, Gradzka-Luczewska A, Szymankiewicz-Breborowicz M, et al. Perinatal Ureaplasma exposure is associated with increased risk of late onset sepsis and imbalanced inflammation in preterm infants and may add to lung injury[J]. Front Cell Infect Microbiol, 2019, 9: 68. PMID: 31001484. PMCID: PMC6454044. DOI: 10.3389/fcimb.2019.00068.
21 陈瑛, 彭晓艳, 韩同英, 等. 早产儿嗜酸性粒细胞增多症与支气管肺发育不良的相关性[J]. 中华新生儿科杂志, 2021, 36(1): 14-19. DOI: 10.3760/cma.j.issn.2096-2932.2021.01.004.
PDF(651 KB)

Accesses

Citation

Detail

Sections
Recommended

/