Magnetic resonance spectroscopy features of the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder: a prospective study

KANG Qian-Qian, LI Xu, TONG Guang-Lei, FAN Ya-Lan, SHI Lei

Chinese Journal of Contemporary Pediatrics ›› 2021, Vol. 23 ›› Issue (12) : 1250-1255.

PDF(730 KB)
PDF(730 KB)
Chinese Journal of Contemporary Pediatrics ›› 2021, Vol. 23 ›› Issue (12) : 1250-1255. DOI: 10.7499/j.issn.1008-8830.2108137
CLINICAL RESEARCH

Magnetic resonance spectroscopy features of the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder: a prospective study

  • KANG Qian-Qian, LI Xu, TONG Guang-Lei, FAN Ya-Lan, SHI Lei
Author information +
History +

Abstract

Objective To study the changes in biochemical metabolites in the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder (ASD). Methods In this prospective study, magnetic resonance spectroscopy (MRS) with point-resolved spatial selection was used to analyze the thalamus and the cerebellum at both sides in 50 children with ASD aged 2-6 years. Creatine (Cr) was as the internal standard to measure the relative values of N-acetylaspartate (NAA)/Cr, choline (Cho)/Cr, myoinositol (MI)/Cr, and glutamine and glutamate complex (Glx)/Cr, and the differences in metabolites and their association with clinical symptoms were compared. Results In the children with ASD, NAA/Cr in the left thalamus was positively correlated with the scores of hearing-language and hand-eye coordination in the Griffiths Development Scales-Chinese (P<0.05). Cho/Cr in the right cerebellum was positively correlated with the scores of personal-social competence, hearing-language, and hand-eye coordination (P<0.05). NAA/Cr and Glx/Cr in the left thalamus were positively correlated with those in the left cerebellum (P<0.05). There was no significant difference in metabolites between the left and right sides of the thalamus and the cerebellum in the children with ASD (P>0.05). Conclusions There are metabolic disorders in the cerebellum and the thalamus in children with ASD, and there is a correlation between the changes of metabolites in the left cerebellum and the left thalamus. Some metabolic indexes are related to the clinical symptoms of ASD. MRS may reveal the pathological basis of ASD and provide a basis for diagnosis and prognosis assessment of ASD as a noninvasive and quantitative detection method.

Key words

Autism spectrum disorder / Magnetic resonance spectroscopy / Thalamus / Cerebellum / Child

Cite this article

Download Citations
KANG Qian-Qian, LI Xu, TONG Guang-Lei, FAN Ya-Lan, SHI Lei. Magnetic resonance spectroscopy features of the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder: a prospective study[J]. Chinese Journal of Contemporary Pediatrics. 2021, 23(12): 1250-1255 https://doi.org/10.7499/j.issn.1008-8830.2108137

References

1 Lord C, Elsabbagh M, Baird G, et al. Autism spectrum disorder[J]. Lancet, 2018, 392(10146): 508-520. PMID: 30078460. PMCID: PMC7398158. DOI: 10.1016/S0140-6736(18)31129-2.
2 Wang F, Lu L, Wang SB, et al. The prevalence of autism spectrum disorders in China: a comprehensive meta-analysis[J]. Int J Biol Sci, 2018, 14(7): 717-725. PMID: 29910682. PMCID: PMC6001678. DOI: 10.7150/ijbs.24063.
3 Stoner R, Chow ML, Boyle MP, et al. Patches of disorganization in the neocortex of children with autism[J]. N Engl J Med, 2014, 370(13): 1209-1219. PMID: 24670167. PMCID: PMC4499461. DOI: 10.1056/NEJMoa1307491.
4 Ford TC, Nibbs R, Crewther DP. Increased glutamate/GABA+ ratio in a shared autistic and schizotypal trait phenotype termed social disorganisation[J]. Neuroimage Clin, 2017, 16: 125-131. PMID: 28794973. PMCID: PMC5537407. DOI: 10.1016/j.nicl.2017.07.009.
5 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders[M]. 5th ed. Arlington, VA: American Psychiatric Association, 2013: 50-59.
6 Schopler E, Reichler RJ, DeVellis RF, et al. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS)[J]. J Autism Dev Disord, 1980, 10(1): 91-103. PMID: 6927682. DOI: 10.1007/BF02408436.
7 杨玉凤. 儿童发育行为心理评定量表[M]. 北京: 人民卫生出版社, 2016: 70-108.
8 Tso WWY, Wong VCN, Xia X, et al. The Griffiths Development Scales-Chinese (GDS-C): a cross-cultural comparison of developmental trajectories between Chinese and British children[J]. Child Care Health Dev, 2018, 44(3): 378-383. PMID: 29392794. DOI: 10.1111/cch.12548.
9 Hardan AY, Fung LK, Frazier T, et al. A proton spectroscopy study of white matter in children with autism[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 66: 48-53. PMID: 26593330. PMCID: PMC4728039. DOI: 10.1016/j.pnpbp.2015.11.005.
10 Fujii E, Mori K, Miyazaki M, et al. Function of the frontal lobe in autistic individuals: a proton magnetic resonance spectroscopic study[J]. J Med Invest, 2010, 57(1-2): 35-44. PMID: 20299741. DOI: 10.2152/jmi.57.35.
11 Edmondson DA, Xia PY, McNally Keehn R, et al. A magnetic resonance spectroscopy study of superior visual search abilities in children with autism spectrum disorder[J]. Autism Res, 2020, 13(4): 550-562. PMID: 31909886. PMCID: PMC7688022. DOI: 10.1002/aur.2258.
12 周樟伟, 夏水伟. ASD患儿脑扣带回代谢物浓度与临床特征的相关性[J]. 中国妇幼健康研究, 2020, 31(4): 497-501. DOI: 10.3969/j.issn.1673-5293.2020.04.018.
13 邹小兵, 曾小璐, 胡冰, 等. 儿童孤独症脑磁共振波谱的病例-对照研究[J]. 中国儿童保健杂志, 2010, 18(1): 5-8.
14 姚滔涛, 陈卓铭, 汪敏, 等. 孤独症患儿小脑磁共振波谱特征分析[J]. 中华物理医学与康复杂志, 2020, 42(6): 546-549. DOI: 10.3760/cma.j.issn.0254-1424.2020.06.015.
15 Hegarty JP, Gu M, Spielman DM, et al. A proton MR spectroscopy study of the thalamus in twins with autism spectrum disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81: 153-160. PMID: 28941767. PMCID: PMC5731458. DOI: 10.1016/j.pnpbp.2017.09.016.
16 Ross AJ, Sachdev PS, Wen W, et al. Cognitive correlates of 1H MRS measures in the healthy elderly brain[J]. Brain Res Bull, 2005, 66(1): 9-16. PMID: 15925139. DOI: 10.1016/j.brainresbull.2005.01.015.
17 Sokol DK, Dunn DW, Edwards-Brown M, et al. Hydrogen proton magnetic resonance spectroscopy in autism: preliminary evidence of elevated choline/creatine ratio[J]. J Child Neurol, 2002, 17(4): 245-249. PMID: 12088077. DOI: 10.1177/088307380201700401.
18 Kleinhans NM, Schweinsburg BC, Cohen DN, et al. N-acetyl aspartate in autism spectrum disorders: regional effects and relationship to FMRI activation[J]. Brain Res, 2007, 1162: 85-97. PMID: 17612510. PMCID: PMC3477551. DOI: 10.1016/j.brainres.2007.04.081.
19 Mori K, Toda Y, Ito H, et al. Neuroimaging in autism spectrum disorders: 1H-MRS and NIRS study[J]. J Med Invest, 2015, 62(1-2): 29-36. PMID: 25817280. DOI: 10.2152/jmi.62.29.
20 Naaijen J, Zwiers MP, Forde NJ, et al. Striatal structure and its association with N-acetylaspartate and glutamate in autism spectrum disorder and obsessive compulsive disorder[J]. Eur Neuropsychopharmacol, 2018, 28(1): 118-129. PMID: 29169826. DOI: 10.1016/j.euroneuro.2017.11.010.
21 DeVito TJ, Drost DJ, Neufeld RWJ, et al. Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopic imaging study[J]. Biol Psychiatry, 2007, 61(4): 465-473. PMID: 17276747. DOI: 10.1016/j.biopsych.2006.07.022.
22 Horder J, Lavender T, Mendez MA, et al. Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [1H]MRS study[J]. Transl Psychiatry, 2014, 4(2): e364. PMID: 24548879. PMCID: PMC3944637. DOI: 10.1038/tp.2014.7.
23 Chernov AN. Pathophysiological mechanisms of autism in children[J]. Zh Nevrol Psikhiatr Im S S Korsakova, 2020, 120(3): 97-108. PMID: 32323951. DOI: 10.17116/jnevro202012003197.
24 Hegarty JP, Weber DJ, Cirstea CM, et al. Cerebro-cerebellar functional connectivity is associated with cerebellar excitation-inhibition balance in autism spectrum disorder[J]. J Autism Dev Disord, 2018, 48(10): 3460-3473. PMID: 29796960. DOI: 10.1007/s10803-018-3613-y.
25 姚滔涛, 陈卓铭, 张书晨. 孤独症患儿神经连接异常的影像特征[J]. 中国康复理论与实践, 2020, 26(4): 472-478. DOI: 10.3969/j.issn.1006-9771.2020.04.016.
26 Cichocka M, Kozub J, Karcz P, et al. Differences in metabolite concentrations between the hemispheres of the brain in healthy children: a proton magnetic resonance spectroscopy study (1HMRS)[J]. J Child Neurol, 2016, 31(11): 1296-1301. PMID: 27364739. DOI: 10.1177/0883073816653784.
PDF(730 KB)

Accesses

Citation

Detail

Sections
Recommended

/