
Change in intestinal flora after treatment in children with focal epilepsy
Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (3) : 290-296.
Change in intestinal flora after treatment in children with focal epilepsy
Objective To study the difference in intestinal flora between children with focal epilepsy and healthy children and the change in intestinal flora after treatment in children with epilepsy. Methods A total of 10 children with newly diagnosed focal epilepsy were recruited as the case group and were all treated with oxcarbazepine alone. Their clinical data were recorded. Fecal specimens before treatment and after 3 months of treatment were collected. Fourteen aged-matched healthy children were recruited as the control group. Total bacterial DNA was extracted from the fecal specimens for 16S rDNA sequencing and bioinformatics analysis. Results After 3 months of carbamazepine treatment, the seizure frequency was reduced by >50% in the case group. At the phylum level, the abundance of Actinobacteria in the case group before treatment was significantly higher than that in the control group (P<0.05), and it was reduced after treatment (P<0.05). At the genus level, the abundances of Escherichia/Shigella, Streptococcus, Collinsella, and Megamonas in the case group before treatment were significantly higher than those in the control group (P<0.05), and the abundances of these bacteria decreased significantly after treatment (P<0.05). Conclusions There is a significant difference in intestinal flora between children with focal epilepsy and healthy children. Oxcarbazepine can significantly improve the symptoms and intestinal flora in children with epilepsy.
1 Thijs RD, Surges R, O'Brien TJ, et al. Epilepsy in adults[J]. Lancet, 2019, 393(10172): 689-701. PMID: 30686584. DOI: 10.1016/S0140-6736(18)32596-0.
2 姜永生, 宋婷婷, 张小鸽, 等. 345例儿童癫痫和癫痫综合征发作类型临床分析[J]. 临床儿科杂志, 2019, 37(11): 812-815. DOI: 10.3969/j.issn.1000-3606.2019.11.004.
3 钟羽, 陈斌, 刘世凯. 儿童癫痫局灶性发作采用奥卡西平与丙戊酸钠治疗临床疗效及其安全性比较[J]. 中外医疗, 2018, 37(5): 136-137, 143. DOI: 10.16662/j.cnki.1674-0742.2018.05.136.
4 Dahlin M, Prast-Nielsen S. The gut microbiome and epilepsy[J]. EBioMedicine, 2019, 44: 741-746. PMID: 31160269. PMCID: PMC6604367. DOI: 10.1016/j.ebiom.2019.05.024.
5 De Caro C, Iannone LF, Citraro R, et al. Can we 'seize' the gut microbiota to treat epilepsy?[J]. Neurosci Biobehav Rev, 2019, 107: 750-764. PMID: 31626816. DOI: 10.1016/j.neubiorev.2019.10.002.
6 丛璐璐, 赵宗茂. 2017年国际抗癫痫联盟癫痫发作和癫痫新分类的简要解读[J]. 河北医科大学学报, 2018, 39(9): 993-995, 1001. DOI: 10.3969/j.issn.1007-3205.2018.09.001.
7 Chen XQ, Zhang WN, Yang ZX, et al. Efficacy of levetiracetam in electrical status epilepticus during sleep of children: a multicenter experience[J]. Pediatr Neurol, 2014, 50(3): 243-249. PMID: 24316167. DOI: 10.1016/j.pediatrneurol.2013.10.015.
8 Peng AJ, Qiu XM, Lai WL, et al. Altered composition of the gut microbiome in patients with drug-resistant epilepsy[J]. Epilepsy Res, 2018, 147: 102-107. PMID: 30291996. DOI: 10.1016/j.eplepsyres.2018.09.013.
9 Zhang YJ, Zhou SZ, Zhou YF, et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet[J]. Epilepsy Res, 2018, 145: 163-168. PMID: 30007242. DOI: 10.1016/j.eplepsyres.2018.06.015.
10 Carlson AL, Xia K, Azcarate-Peril MA, et al. Infant gut microbiome associated with cognitive development[J]. Biol Psychiatry, 2017, 83(2): 148-159. PMID: 28793975. PMCID: PMC5724966. DOI: 10.1016/j.biopsych.2017.06.021.
11 Huang NN, Hua DY, Zhan GF, et al. Role of Actinobacteria and Coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression[J]. Pharmacol Biochem Behav, 2019, 176: 93-100. PMID: 30528936. DOI: 10.1016/j.pbb.2018.12.001.
12 Chen J, Wright K, Davis JM, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis[J]. Genome Med, 2016, 8(1): 43. PMID: 27102666. PMCID: PMC4840970. DOI: 10.1186/s13073-016-0299-7.
13 Mao LY, Ding J, Peng WF, et al. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients[J]. Epilepsia, 2013, 54(9): e142-e145. PMID: 23944193. DOI: 10.1111/epi.12337.
14 Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly[J]. Neurobiol Aging, 2017, 49: 60-68. PMID: 27776263. DOI: 10.1016/j.neurobiolaging.2016.08.019.
15 Lu A, Wu H. Structural mechanisms of inflammasome assembly[J]. FEBS J, 2015, 282(3): 435-444. PMID: 25354325. PMCID: PMC6400279. DOI: 10.1111/febs.13133.
16 Voet S, Srinivasan S, Lamkanfi M, et al. Inflammasomes in neuroinflammatory and neurodegenerative diseases[J]. EMBO Mol Med, 2019, 11(6): e10248. PMID: 31015277. PMCID: PMC6554670. DOI: 10.15252/emmm.201810248.
17 Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms[J]. Acta Neuropsychiatr, 2017, 29(1): 1-16. PMID: 27692004. DOI: 10.1017/neu.2016.47.
18 Balosso S, Maroso M, Sanchez-Alavez M, et al. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta[J]. Brain, 2008, 131(Pt 12): 3256-3265. PMID: 18952671. PMCID: PMC2724908. DOI: 10.1093/brain/awn271.
19 贾天明, 李月琴, 张晓莉, 等. 核苷酸结合寡聚化结构域样受体蛋白3炎性小体在癫痫大鼠模型中的表达及褪黑素对其的影响[J]. 中华实用儿科临床杂志, 2018, 33(12): 913-917. DOI: 10.3760/cma.j.issn.2095-428X.2018.12.009.
20 Jiang WW, Wu N, Wang XM, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease[J]. Sci Rep, 2015, 5: 8096. PMID: 25644696. PMCID: PMC4314632. DOI: 10.1038/srep08096.
21 Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability[J]. Front Neuroendocrinol, 2012, 33(1): 116-125. PMID: 22214786. PMCID: PMC3547977. DOI: 10.1016/j.yfrne.2011.12.002.
22 Rana A, Musto AE. The role of inflammation in the development of epilepsy[J]. Neuroinflammation, 2018, 15(1): 144. PMID: 29764485. PMCID: PMC5952578. DOI: 10.1186/s12974-018-1192-7.
23 谭惠子. 健康人群肠道中低丰度拟杆菌的筛选及生理作用研究[D]. 无锡: 江南大学, 2019.
24 Joseph J, Depp C, Shih PAB, et al. Modified Mediterranean diet for enrichment of short chain fatty acids: potential adjunctive therapeutic to target immune and metabolic dysfunction in schizophrenia?[J]. Front Neurosci, 2017, 11: 155. PMID: 28396623. PMCID: PMC5366345. DOI: 10.3389/fnins.2017.00155.
25 Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015, 18(7): 965-977. PMID: 26030851. PMCID: PMC5528863. DOI: 10.1038/nn.4030.
26 Nayak D, Roth TL, McGavern DB. Microglia development and function[J]. Annu Rev Immunol, 2014, 32: 367-402. PMID: 24471431. PMCID: PMC5001846. DOI: 10.1146/annurev-immunol-032713-120240.
27 Eyo UB, Murugan M, Wu LJ. Microglia-neuron communication in epilepsy[J]. Glia, 2017, 65(1): 5-18. PMID: 27189853. PMCID: PMC5116010. DOI: 10.1002/glia.23006.
28 Hiragi T, Ikegaya Y, Koyama R. Microglia after seizures and in epilepsy[J]. Cells, 2018, 7(4): 26. PMID: 29597334. PMCID: PMC5946103. DOI: 10.3390/cells7040026.
29 傅希玥, 陆地, 边立功, 等. 小胶质细胞的激活与癫痫的关系[J]. 昆明医科大学学报, 2017, 38(2): 127-130. DOI: 10.3969/j.issn.1003-4706.2017.02.029.
30 Fukumoto S, Tatewaki M, Yamada T, et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats[J]. Am J Physiol Regul Integr Comp Physiol, 2003, 284(5): R1269-R1276. PMID: 12676748. DOI: 10.1152/ajpregu.00442.2002.
31 Perici? D, Svob Strac D. The role of 5-HT7 receptors in the control of seizures[J]. Brain Res, 2007, 1141: 48-55. PMID: 17276417. DOI: 10.1016/j.brainres.2007.01.019.
32 He Z, Cui BT, Zhang T, et al. Fecal microbiota transplantation cured epilepsy in a case with Crohn's disease: the first report[J]. World J Gastroenterol, 2017, 23(19): 3565-3568. PMID: 28596693. PMCID: PMC5442093. DOI: 10.3748/wjg.v23.i19.3565.
33 Vendrik KEW, Ooijevaar RE, de Jong PRC, et al. Fecal microbiota transplantation in neurological disorders[J]. Front Cell Infect Microbiol, 2020, 10: 98. PMID: 32266160. PMCID: PMC7105733. DOI: 10.3389/fcimb.2020.00098.