Expert consensus on the clinical practice of neonatal brain magnetic resonance imaging

Neonatologist Society, Chinese Medical Doctor Association,Editorial Board of Chinese Journal of Contemporary Pediatrics

Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (1) : 14-25.

PDF(759 KB)
PDF(759 KB)
Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (1) : 14-25. DOI: 10.7499/j.issn.1008-8830.2110018
STANDARD·PROTOCOL·GUIDELINE

Expert consensus on the clinical practice of neonatal brain magnetic resonance imaging

  • Neonatologist Society, Chinese Medical Doctor Association,Editorial Board of Chinese Journal of Contemporary Pediatrics
Author information +
History +

Abstract

In recent years, magnetic resonance imaging (MRI) has been widely used in evaluating neonatal brain development, diagnosing neonatal brain injury, and predicting neurodevelopmental prognosis. Based on current research evidence and clinical experience in China and overseas, the Neonatologist Society of Chinese Medical Doctor Association has developed a consensus on the indications and standardized clinical process of neonatal brain MRI. The consensus has the following main points. (1) Brain MRI should be performed for neonates suspected of hypoxic-ischemic encephalopathy, intracranial infection, stroke and unexplained convulsions; brain MRI is not considered a routine in the management of preterm infants, but it should be performed for further evaluation when cranial ultrasound finds evidence of brain injury; as for extremely preterm or extremely low birth weight infants without abnormal ultrasound findings, it is recommended that they should undergo MRI examination at term equivalent age once. (2) Neonates should undergo MRI examination in a non-sedated state if possible. (3) During MRI examination, vital signs should be closely monitored to ensure safety; the necessity of MRI examination should be strictly evaluated for critically ill neonates, and magnetic resonance compatible incubator and ventilator can be used. (4) At present, 1.5 T or 3.0 T equipment can be used for neonatal brain MRI examination, and the special coil for the neonatal head should be used to improve signal-to-noise ratio; routine neonatal brain MRI sequences should at least include axial T1 weighted image (T1WI), axial T2 weighted imaging (T2WI), diffusion-weighted imaging, and sagittal T1WI or T2WI. (5) It is recommended to use a structured and graded reporting system, and reports by at least two reviewers and multi-center collaboration are recommended to increase the reliability of the report.

Key words

Brain injury / Brain magnetic resonance imaging / Expert consensus / Neonate

Cite this article

Download Citations
Neonatologist Society, Chinese Medical Doctor Association,Editorial Board of Chinese Journal of Contemporary Pediatrics. Expert consensus on the clinical practice of neonatal brain magnetic resonance imaging[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(1): 14-25 https://doi.org/10.7499/j.issn.1008-8830.2110018

References

1 新生儿神经重症监护单元建设专家共识工作组, 中华医学会儿科学分会新生儿学组. 新生儿神经重症监护单元建设专家共识[J]. 中国循证儿科杂志, 2018, 13(4): 241-247. DOI: 10.3969/j.issn.1673-5501.2018.04.001.
2 Younge N, Goldstein RF, Bann CM, et al. Survival and neurodevelopmental outcomes among periviable infants[J]. N Engl J Med, 2017, 376(7): 617-628. PMID: 28199816. PMCID: PMC5456289. DOI: 10.1056/NEJMoa1605566.
3 Jarjour IT. Neurodevelopmental outcome after extreme prematurity: a review of the literature[J]. Pediatr Neurol, 2015, 52(2): 143-152. PMID: 25497122. DOI: 10.1016/j.pediatrneurol.2014.10.027.
4 O'Muircheartaigh J, Robinson EC, Pietsch M, et al. Modelling brain development to detect white matter injury in term and preterm born neonates[J]. Brain, 2020, 143(2): 467-479. PMID: 31942938. PMCID: PMC7009541. DOI: 10.1093/brain/awz412.
5 Barkovich MJ, Li Y, Desikan RS, et al. Challenges in pediatric neuroimaging[J]. Neuroimage, 2019, 185: 793-801. PMID: 29684645. PMCID: PMC6197938. DOI: 10.1016/j.neuroimage.2018.04.044.
6 The American College of Obstetricians and Gynecologists Women's Health Care Physicians. Executive summary: neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists' Task Force on Neonatal Encephalopathy[J]. Obstet Gynecol, 2014, 123(4): 896-901. PMID: 24785633. DOI: 10.1097/01.AOG.0000445580.65983.d2.
7 Doμglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician[J]. JAMA Pediatr, 2015, 169(4): 397-403. PMID: 25685948. DOI: 10.1001/jamapediatrics.2014.3269.
8 中国医师协会新生儿科医师分会. 新生儿缺氧缺血性脑病磁共振诊断与损伤类型的分类建议[J]. 中国当代儿科杂志, 2017, 19(12): 1225-1233. PMID: 29237520. PMCID: PMC7389802. DOI: 10.7499/j.issn.1008-8830.2017.12.001.
9 Ment LR, Bada HS, Barnes P, et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society[J]. Neurology, 2002, 58(12): 1726-1738. PMID: 12084869. DOI: 10.1212/wnl.58.12.1726.
10 Barkovich AJ, Miller SP, Bartha A, et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy[J]. AJNR Am J Neuroradiol, 2006, 27(3): 533-547. PMID: 16551990. PMCID: PMC7976955.
11 尤嘉, 刘俐, 张明, 等. T1WI信号强度与1H MRS在新生儿缺氧缺血性肭病诊断中的价值[J]. 中国当代儿科杂志, 2011, 13(2): 107-110. PMID: 21342617.
12 Groenendaal F, de Vries LS. Fifty years of brain imaging in neonatal encephalopathy following perinatal asphyxia[J]. Pediatr Res, 2017, 81(1-2): 150-155. PMID: 27673422. DOI: 10.1038/pr.2016.195.
13 Oz G, Alger JR, Barker PB, et al. Clinical proton MR spectroscopy in central nervous system disorders[J]. Radiology, 2014, 270(3): 658-679. PMID: 24568703. PMCID: PMC4263653. DOI: 10.1148/radiol.13130531.
14 Alderliesten T, de Vries LS, Benders MJNL , et al. MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and 1H MR spectroscopy[J]. Radiology, 2011, 261(1): 235-242. PMID: 21828190. DOI: 10.1148/radiol.11110213.
15 McKinstry RC, Miller JH, Snyder AZ, et al. A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns[J]. Neurology, 2002, 59(6): 824-833. PMID: 12297561. DOI: 10.1212/wnl.59.6.824.
16 Rutherford M, Biarge MM, Allsop J, et al. MRI of perinatal brain injury[J]. Pediatr Radiol, 2010, 40(6): 819-833. PMID: 20432000. DOI: 10.1007/s00247-010-1620-z.
17 Cheong JLY, Coleman L, Hunt RW, et al. Prognostic utility of magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy: substudy of a randomized trial[J]. Arch Pediatr Adolesc Med, 2012, 166(7): 634-640. PMID: 22751877. DOI: 10.1001/archpediatrics.2012.284.
18 毛健. 新生儿期常见的中枢神经系统感染磁共振成像评价的重要性[J]. 中华实用儿科临床杂志, 2016, 31(14): 1052-1058. DOI: 10.3760/cma.j.issn.2095-428X.2016.14.004.
19 Oliveira CR, Morriss MC, Mistrot JG, et al. Brain magnetic resonance imaging of infants with bacterial meningitis[J]. J Pediatr, 2014, 165(1): 134-139. PMID: 24726712. PMCID: PMC6855593. DOI: 10.1016/j.jpeds.2014.02.061.
20 张丹, 富建华, 薛辛东, 等. MRI早期评估新生儿化脓性脑膜炎的临床应用价值[J]. 中国小儿急救医学, 2011, 18(3): 217-219. DOI: 10.3760/cma.j.issn.1673-4912.2011.03.008.
21 张静, 毛健, 李娟, 等. 新生儿不同病原菌化脓性脑膜炎在磁共振影像学上的特点[J]. 中国当代儿科杂志, 2012, 14(7): 489-495. PMID: 22809598.
22 Jaremko JL, Moon AS, Kumbla S. Patterns of complications of neonatal and infant meningitis on MRI by organism: a 10 year review[J]. Eur J Radiol, 2011, 80(3): 821-827. PMID: 21067879. DOI: 10.1016/j.ejrad.2010.10.017.
23 Low E, Mathieson SR, Stevenson NJ, et al. Early postnatal EEG features of perinatal arterial ischaemic stroke with seizures[J]. PLoS One, 2014, 9(7): e100973. PMID: 25051161. PMCID: PMC4106759. DOI: 10.1371/journal.pone.0100973.
24 Kralik SF, Kukreja MK, Paldino MJ, et al. Comparison of CSF and MRI findings among neonates and infants with E coli or group B streptococcal meningitis[J]. AJNR Am J Neuroradiol, 2019, 40(8): 1413-1417. PMID: 31320464. PMCID: PMC7048479. DOI: 10.3174/ajnr.A6134.
25 毛健, 李娟, 陈丹, 等. 磁共振成像在早产儿白色念珠菌感染脑脓肿诊断中的意义[J]. 中国当代儿科杂志, 2011, 13(8): 621-626. PMID: 21849109.
26 Bajaj M, Mody S, Natarajan G. Clinical and neuroimaging findings in neonatal herpes simplex virus infection[J]. J Pediatr, 2014, 165(2): 404-407.e1. PMID: 24929330. DOI: 10.1016/j.jpeds.2014.04.046.
27 Sarma A, Hanzlik E, Krishnasarma R, et al. Human parechovirus meningoencephalitis: neuroimaging in the era of polymerase chain reaction-based testing[J]. AJNR Am J Neuroradiol, 2019, 40(8): 1418-1421. PMID: 31272964. PMCID: PMC7048476. DOI: 10.3174/ajnr.A6118.
28 Renard D, Nerrant E, Lechiche C. DWI and FLAIR imaging in herpes simplex encephalitis: a comparative and topographical analysis[J]. J Neurol, 2015, 262(9): 2101-2105. PMID: 26092520. DOI: 10.1007/s00415-015-7818-0.
29 Wu T, Fan XP, Wang WY, et al. Enterovirus infections are associated with white matter damage in neonates[J]. J Paediatr Child Health, 2014, 50(10): 817-822. PMID: 24910173. DOI: 10.1111/jpc.12656.
30 Nakamura R, Chong PF, Haraguchi K, et al. Disseminated cortical and subcortical lesions in neonatal enterovirus 71 encephalitis[J]. J Neurovirol, 2020, 26(5): 790-792. PMID: 32671810. DOI: 10.1007/s13365-020-00843-2.
31 Kidokoro H, de Vries LS, Ogawa C, et al. Predominant area of brain lesions in neonates with herpes simplex encephalitis[J]. J Perinatol, 2017, 37(11): 1210-1214. PMID: 28726789. DOI: 10.1038/jp.2017.114.
32 Ferriero DM, Fullerton HJ, Bernard TJ, et al. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association[J]. Stroke, 2019, 50(3): e51-e96. PMID: 30686119. DOI: 10.1161/STR.0000000000000183.
33 Dunbar M, Kirton A. Perinatal stroke[J]. Semin Pediatr Neurol, 2019, 32: 100767. PMID: 31813521. DOI: 10.1016/j.spen.2019.08.003.
34 Saliba E, Debillon T, Recommandations accident vasculaire cérébral (AVC) néonatal, et al. Neonatal arterial ischemic stroke: review of the current guidelines[J]. Arch Pediatr, 2017, 24(2): 180-188. PMID: 28011082. DOI: 10.1016/j.arcped.2016.11.005.
35 Benders MJNL, Groenendaal F, Uiterwaal CSPM, et al. Maternal and infant characteristics associated with perinatal arterial stroke in the preterm infant[J]. Stroke, 2007, 38(6): 1759-1765. PMID: 17495219. DOI: 10.1161/STROKEAHA.106.479311.
36 孙婧, 陈丹, 毛健. 新生儿脑静脉(窦)血栓性疾病研究进展[J]. 中国当代儿科杂志, 2021, 23(8): 860-866. PMID: 34511178. PMCID: PMC8428911. DOI: 10.7499/j.issn.1008-8830.2105146.
37 Rossor T, Arichi T, Bhate S, et al. Anticoagulation in the management of neonatal cerebral sinovenous thrombosis: a systematic review and meta-analysis[J]. Dev Med Child Neurol, 2018, 60(9): 884-891. PMID: 29675941. DOI: 10.1111/dmcn.13760.
38 Husson B, Durand C, Hertz-Pannier L. Recommendations for imaging neonatal ischemic stroke[J]. Arch Pediatr, 2017, 24(9S): 9S19-9S27. PMID: 28867033. DOI: 10.1016/S0929-693X(17)30327-5.
39 付佳博, 富建华, 薛辛东. 新生儿脑梗死47例磁共振成像分析[J]. 中华新生儿科杂志, 2020, 35(4): 281-285. DOI: 10.3760/cma.j.issn.2096-2932.2020.04.009.
40 Husson B, Hertz-Pannier L, Adamsbaum C, et al. MR angiography findings in infants with neonatal arterial ischemic stroke in the middle cerebral artery territory: a prospective study using circle of Willis MR angiography[J]. Eur J Radiol, 2016, 85(7): 1329-1335. PMID: 27235881. DOI: 10.1016/j.ejrad.2016.05.002.
41 De Vis JB, Petersen ET, Kersbergen KJ, et al. Evaluation of perinatal arterial ischemic stroke using noninvasive arterial spin labeling perfusion MRI[J]. Pediatr Res, 2013, 74(3): 307-313. PMID: 23797533. DOI: 10.1038/pr.2013.111.
42 Watson CG, Dehaes M, Gagoski BA, et al. Arterial spin labeling perfusion magnetic resonance imaging performed in acute perinatal stroke reveals hyperperfusion associated with ischemic injury[J]. Stroke, 2016, 47(6): 1514-1519. PMID: 27143277. DOI: 10.1161/STROKEAHA.115.011936.
43 Lee S, Mirsky DM, Beslow LA, et al. Pathways for neuroimaging of neonatal stroke[J]. Pediatr Neurol, 2017, 69: 37-48. PMID: 28262550. DOI: 10.1016/j.pediatrneurol.2016.12.008.
44 Pressler RM, Cilio MR, Mizrahi EM, et al. The ILAE classification of seizures and the epilepsies: modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures[J]. Epilepsia, 2021, 62(3): 615-628. PMID: 33522601. DOI: 10.1111/epi.16815.
45 Weeke LC, Groenendaal F, Toet MC, et al. The aetiology of neonatal seizures and the diagnostic contribution of neonatal cerebral magnetic resonance imaging[J]. Dev Med Child Neurol, 2015, 57(3): 248-256. PMID: 25385195. DOI: 10.1111/dmcn.12629.
46 马思敏, 杨琳, 周文浩. 新生儿惊厥诊断和治疗进展[J]. 中国循证儿科杂志, 2015, 10(2): 126-135. DOI: 10.3969/j.issn.1673-5501.2015.02.009.
47 Osmond E, Billetop A, Jary S, et al. Neonatal seizures: magnetic resonance imaging adds value in the diagnosis and prediction of neurodisability[J]. Acta Paediatr, 2014, 103(8): 820-826. PMID: 24494791. DOI: 10.1111/apa.12583.
48 Wilmshurst JM, Gaillard WD, Vinayan KP, et al. Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics[J]. Epilepsia, 2015, 56(8): 1185-1197. PMID: 26122601. DOI: 10.1111/epi.13057.
49 Volpe JJ. Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions[J]. Pediatr Neurol, 2019, 95: 42-66. PMID: 30975474. DOI: 10.1016/j.pediatrneurol.2019.02.016.
50 De Vries LS, Van Haastert ILC, Rademaker KJ, et al. Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants[J]. J Pediatr, 2004, 144(6): 815-820. PMID: 15192633. DOI: 10.1016/j.jpeds.2004.03.034.
51 de Vries LS, Volpe JJ. Value of sequential MRI in preterm infants[J]. Neurology, 2013, 81(24): 2062-2063. PMID: 24212397. DOI: 10.1212/01.wnl.0000437309.22603.0a.
52 Inder TE, de Vries LS, Ferriero DM, et al. Neuroimaging of the preterm brain: review and recommendations[J]. J Pediatr, 2021, 237: 276-287.e4. PMID: 34146549. DOI: 10.1016/j.jpeds.2021.06.014.
53 Mirmiran M, Barnes PD, Keller K, et al. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants[J]. Pediatrics, 2004, 114(4): 992-998. PMID: 15466096. DOI: 10.1542/peds.2003-0772-L.
54 de Vries LS, Benders MJ, Groenendaal F. Imaging the premature brain: ultrasound or MRI?[J]. Neuroradiology, 2013, 55 Suppl 2: 13-22. PMID: 23839652. DOI: 10.1007/s00234-013-1233-y.
55 Ski?ld B, Vollmer B, B?hm B, et al. Neonatal magnetic resonance imaging and outcome at age 30 months in extremely preterm infants[J]. J Pediatr, 2012, 160(4): 559-566.e1. PMID: 22056283. DOI: 10.1016/j.jpeds.2011.09.053.
56 Set?nen S, Haataja L, Parkkola R, et al. Predictive value of neonatal brain MRI on the neurodevelopmental outcome of preterm infants by 5 years of age[J]. Acta Paediatr, 2013, 102(5): 492-497. PMID: 23398524. DOI: 10.1111/apa.12191.
57 Tam EWY, Rosenbluth G, Rogers EE, et al. Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome[J]. J Pediatr, 2011, 158(2): 245-250. PMID: 20833401. PMCID: PMC3010295. DOI: 10.1016/j.jpeds.2010.07.049.
58 Parikh MN, Chen M, Braimah A, et al. Diffusion MRI microstructural abnormalities at term-equivalent age are associated with neurodevelopmental outcomes at 3 years of age in very preterm infants[J]. AJNR Am J Neuroradiol, 2021, 42(8): 1535-1542. PMID: 33958330. PMCID: PMC8367615. DOI: 10.3174/ajnr.A7135.
59 Choi YH, Lee JM, Lee JY, et al. Delayed maturation of the middle cerebellar peduncles at near-term age predicts abnormal neurodevelopment in preterm infants[J]. Neonatology, 2021, 118(1): 37-46. PMID: 33503618. PMCID: PMC8117383. DOI: 10.1159/000512921.
60 Albayram MS, Smith G, Tufan F, et al. Frequency, extent, and correlates of superficial siderosis and ependymal siderosis in premature infants with germinal matrix hemorrhage: an SWI study[J]. AJNR Am J Neuroradiol, 2020, 41(2): 331-337. PMID: 31919140. PMCID: PMC7015196. DOI: 10.3174/ajnr.A6371.
61 Filan PM, Inder TE, Anderson PJ, et al. Monitoring the neonatal brain: a survey of current practice among Australian and New Zealand neonatologists[J]. J Paediatr Child Health, 2007, 43(7/8): 557-559. PMID: 17635686. DOI: 10.1111/j.1440-1754.2007.01136.x.
62 Smyser CD, Kidokoro H, Inder TE. Magnetic resonance imaging of the brain at term equivalent age in extremely premature neonates: to scan or not to scan?[J]. J Paediatr Child Health, 2012, 48(9): 794-800. PMID: 22970674. PMCID: PMC3595093. DOI: 10.1111/j.1440-1754.2012.02535.x.
63 Hand IL, Shellhaas RA, Milla SS, et al. Routine neuroimaging of the preterm brain[J]. Pediatrics, 2020, 146(5): e2020029082. PMID: 33106343. DOI: 10.1542/peds.2020-029082.
64 Jakab A, Meuwly E, Feldmann M, et al. Left temporal plane growth predicts language development in newborns with congenital heart disease[J]. Brain, 2019, 142(5): 1270-1281. PMID: 30957841. DOI: 10.1093/brain/awz067.
65 Mebius MJ, Kooi EMW, Bilardo CM, et al. Brain injury and neurodevelopmental outcome in congenital heart disease: a systematic review[J]. Pediatrics, 2017, 140(1): e20164055. PMID: 28607205. DOI: 10.1542/peds.2016-4055.
66 Beca J, Gunn JK, Coleman L, et al. New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest[J]. Circulation, 2013, 127(9): 971-979. PMID: 23371931. DOI: 10.1161/CIRCULATIONAHA.112.001089.
67 Peyvandi S, Chau V, Guo T, et al. Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease[J]. J Am Coll Cardiol, 2018, 71(18): 1986-1996. PMID: 29724352. PMCID: PMC5940013. DOI: 10.1016/j.jacc.2018.02.068.
68 Marino BS, Lipkin PH, Newburger JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association[J]. Circulation, 2012, 126(9): 1143-1172. PMID: 22851541. DOI: 10.1161/CIR.0b013e318265ee8a.
69 Polito A, Barrett CS, Wypij D, et al. Neurologic complications in neonates supported with extracorporeal membrane oxygenation. An analysis of ELSO registry data[J]. Intensive Care Med, 2013, 39(9): 1594-1601. PMID: 23749154. DOI: 10.1007/s00134-013-2985-x.
70 Madderom MJ, Schiller RM, Gischler SJ, et al. Growing up after critical illness: verbal, visual-spatial, and working memory problems in neonatal extracorporeal membrane oxygenation survivors[J]. Crit Care Med, 2016, 44(6): 1182-1190. PMID: 26937861. DOI: 10.1097/CCM.0000000000001626.
71 Wien MA, Whitehead MT, Bulas D, et al. Patterns of brain injury in newborns treated with extracorporeal membrane oxygenation[J]. AJNR Am J Neuroradiol, 2017, 38(4): 820-826. PMID: 28209579. PMCID: PMC7960244. DOI: 10.3174/ajnr.A5092.
72 王乐, 程国强. 新生儿体外膜肺氧合期间的神经监护和评估[J]. 中华实用儿科临床杂志, 2020, 35(14): 1113-1116. DOI: 10.3760/cma.j.cn101070-20190717-00654.
73 American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation[J]. Pediatrics, 2004, 114(1): 297-316. PMID: 15231951. DOI: 10.1542/peds.114.1.297.
74 Coskun A, Yikilmaz A, Kumandas S, et al. Hyperintense globus pallidus on T1-weighted MR imaging in acute kernicterus: is it common or rare?[J]. Eur Radiol, 2005, 15(6): 1263-1267. PMID: 15565320. DOI: 10.1007/s00330-004-2502-2.
75 Arhan E, ?ztürk Z, Serdaro?lu A, et al. Neonatal hypoglycemia: a wide range of electroclinical manifestations and seizure outcomes[J]. Eur J Paediatr Neurol, 2017, 21(5): 738-744. PMID: 28623069. DOI: 10.1016/j.ejpn.2017.05.009.
76 Basu SK, Ottolini K, Govindan V, et al. Early glycemic profile is associated with brain injury patterns on magnetic resonance imaging in hypoxic ischemic encephalopathy[J]. J Pediatr, 2018, 203: 137-143. PMID: 30197201. PMCID: PMC6323004. DOI: 10.1016/j.jpeds.2018.07.041.
77 Burns CM, Rutherford MA, Boardman JP, et al. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia[J]. Pediatrics, 2008, 122(1): 65-74. PMID: 18595988. DOI: 10.1542/peds.2007-2822.
78 Parks JS. Congenital hypopituitarism[J]. Clin Perinatol, 2018, 45(1): 75-91. PMID: 29406008. DOI: 10.1016/j.clp.2017.11.001.
79 Kim SY, Goo HW, Lim KH, et al. Neonatal hypoglycaemic encephalopathy: diffusion-weighted imaging and proton MR spectroscopy[J]. Pediatr Radiol, 2006, 36(2): 144-148. PMID: 16284763. DOI: 10.1007/s00247-005-0020-2.
80 Arthurs OJ, Edwards A, Austin T, et al. The challenges of neonatal magnetic resonance imaging[J]. Pediatr Radiol, 2012, 42(10): 1183-1194. PMID: 22886375. DOI: 10.1007/s00247-012-2430-2.
81 Finnemore A, Toulmin H, Merchant N, et al. Chloral hydrate sedation for magnetic resonance imaging in newborn infants[J]. Paediatr Anaesth, 2014, 24(2): 190-195. PMID: 24387147. DOI: 10.1111/pan.12264.
82 Parad RB. Non-sedation of the neonate for radiologic procedures[J]. Pediatr Radiol, 2018, 48(4): 524-530. PMID: 29550867. DOI: 10.1007/s00247-017-4002-y.
83 Dong SZ, Zhu M, Bulas D. Techniques for minimizing sedation in pediatric MRI[J]. J Magn Reson Imaging, 2019, 50(4): 1047-1054. PMID: 30869831. DOI: 10.1002/jmri.26703.
84 Edwards AD, Arthurs OJ. Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives?[J]. Pediatr Radiol, 2011, 41(11): 1353-1364. PMID: 21678113. DOI: 10.1007/s00247-011-2147-7.
85 沈晓霞, 刘婷婷, 高福生, 等. 真空固定器联合喂奶方式在新生儿头颅磁共振成像中的应用——前瞻性随机对照研究[J]. 中国当代儿科杂志, 2020, 22(5): 435-440. PMID: 32434637. PMCID: PMC7389395. DOI: 10.7499/j.issn.1008-8830.2001047.
86 De Sanctis Briggs V. Magnetic resonance imaging under sedation in newborns and infants: a study of 640 cases using sevoflurane[J]. Paediatr Anaesth, 2005, 15(1): 9-15. PMID: 15649157. DOI: 10.1111/j.1460-9592.2005.01360.x.
87 Lei H, Chao L, Miao T, et al. Serious airway-related adverse events with sevoflurane anesthesia via facemask for magnetic resonance imaging in 7129 pediatric patients: a retrospective study[J]. Paediatr Anaesth, 2019, 29(6): 635-639. PMID: 30729614. DOI: 10.1111/pan.13601.
88 He L, Wang X, Zheng S. Effects of dexmedetomidine on sevoflurane requirement for 50% excellent tracheal intubation in children: a randomized, double-blind comparison[J]. Paediatr Anaesth, 2014, 24(9): 987-993. PMID: 24823715. DOI: 10.1111/pan.12430.
89 Lee JR, Joseph B, Hofacer RD, et al. Effect of dexmedetomidine on sevoflurane-induced neurodegeneration in neonatal rats[J]. Br J Anaesth, 2021, 126(5): 1009-1021. PMID: 33722372. DOI: 10.1016/j.bja.2021.01.033.
90 Copeland A, Silver E, Korja R, et al. Infant and child MRI: a review of scanning procedures[J]. Front Neurosci, 2021, 15: 666020. PMID: 34321992. PMCID: PMC8311184. DOI: 10.3389/fnins.2021.666020.
91 Coté CJ, Wilson S, American Academy of Pediatrics, et al. Guidelines for monitoring and management of pediatric patients before, during, and after sedation for diagnostic and therapeutic procedures[J]. Pediatrics, 2019, 143(6): e20191000. PMID: 31138666. DOI: 10.1542/peds.2019-1000.
92 Coté CJ, Zaslavsky A, Downes JJ, et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy. A combined analysis[J]. Anesthesiology, 1995, 82(4): 809-822. PMID: 7717551. DOI: 10.1097/00000542-199504000-00002.
93 Rona Z, Klebermass K, Cardona F, et al. Comparison of neonatal MRI examinations with and without an MR-compatible incubator: advantages in examination feasibility and clinical decision-making[J]. Eur J Paediatr Neurol, 2010, 14(5): 410-417. PMID: 20471292. DOI: 10.1016/j.ejpn.2010.03.005.
94 Bekiesińska-Figatowska M, Helwich E, Rutkowska M, et al. Magnetic resonance imaging of neonates in the magnetic resonance compatible incubator[J]. Arch Med Sci, 2016, 12(5): 1064-1070. PMID: 27695498. PMCID: PMC5016588. DOI: 10.5114/aoms.2016.61913.
95 刘莲, 张鹏, 夏红萍, 等. 磁共振转运培养箱用于新生儿头颅磁共振检查的多中心前瞻性随机对照研究[J]. 中国当代儿科杂志, 2020, 22(12): 1251-1255. PMID: 33327993. PMCID: PMC7735921. DOI: 10.7499/j.issn.1008-8830.2007081.
96 Scarabino T, Popolizio T, Giannatempo GM, et al. 3.0-T morphological and angiographic brain imaging: a 5-years experience[J]. Radiol Med, 2007, 112(1): 82-96. PMID: 17310288. DOI: 10.1007/s11547-007-0123-y.
97 Cawley P, Few K, Greenwood R, et al. Does magnetic resonance brain scanning at 3.0 Tesla pose a hyperthermic challenge to term neonates?[J]. J Pediatr, 2016, 175: 228-230.e1. PMID: 27318382. DOI: 10.1016/j.jpeds.2016.05.014.
98 Keil B, Alagappan V, Mareyam A, et al. Size-optimized 32-channel brain arrays for 3 T pediatric imaging[J]. Magn Reson Med, 2011, 66(6): 1777-1787. PMID: 21656548. PMCID: PMC3218247. DOI: 10.1002/mrm.22961.
99 Dubois J, Alison M, Counsell SJ, et al. MRI of the neonatal brain: a review of methodological challenges and neuroscientific advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. PMID: 32420684. PMCID: PMC8247362. DOI: 10.1002/jmri.27192.
100 Dubois J, Dehaene-Lambertz G, Kulikova S, et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants[J]. Neuroscience, 2014, 276: 48-71. PMID: 24378955. DOI: 10.1016/j.neuroscience.2013.12.044.
101 Saunders DE, Thompson C, Gunny R, et al. Magnetic resonance imaging protocols for paediatric neuroradiology[J]. Pediatr Radiol, 2007, 37(8): 789-797. PMID: 17487479. PMCID: PMC1950216. DOI: 10.1007/s00247-007-0462-9.
102 Bruno MA, Walker EA, Abujudeh HH. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction[J]. Radiographics, 2015, 35(6): 1668-1676. PMID: 26466178. DOI: 10.1148/rg.2015150023.
103 Tkach JA, Li Y, Pratt RG, et al. Characterization of acoustic noise in a neonatal intensive care unit MRI system[J]. Pediatr Radiol, 2014, 44(8): 1011-1019. PMID: 24595878. PMCID: PMC4241776. DOI: 10.1007/s00247-014-2909-0.
PDF(759 KB)

Accesses

Citation

Detail

Sections
Recommended

/