Recent research on the effect of common treatments given in the perinatal period on neurodevelopment in offspring

WEI Si-Meng

Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (3) : 332-338.

PDF(525 KB)
PDF(525 KB)
Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (3) : 332-338. DOI: 10.7499/j.issn.1008-8830.2111002
REVIEW

Recent research on the effect of common treatments given in the perinatal period on neurodevelopment in offspring

  • WEI Si-Meng
Author information +
History +

Abstract

The perinatal period is the key period for the development of brain and central nervous system, and different events in this period will have a profound influence on brain development. Glucocorticoids, antibiotics, magnesium sulfate, caffeine, pulmonary surfactant, and mild hypothermia treatment are commonly used drugs or treatment methods in the perinatal period and are closely associated with the prognosis of neonatal neurodevelopment. This article reviews the latest research on the effect of perinatal treatments on neonatal neurodevelopment, so as to provide a reference for clinical decision making.

Key words

Perinatal period / Treatment / Neurodevelopment / Neonate

Cite this article

Download Citations
WEI Si-Meng. Recent research on the effect of common treatments given in the perinatal period on neurodevelopment in offspring[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(3): 332-338 https://doi.org/10.7499/j.issn.1008-8830.2111002

References

1 Faa G, Manchia M, Pintus R, et al. Fetal programming of neuropsychiatric disorders[J]. Birth Defects Res C Embryo Today, 2016, 108(3): 207-223. PMID: 27774781. DOI: 10.1002/bdrc.21139.
2 Jobe AH. Neonatal stress and resilience—lasting effects of antenatal corticosteroids 1[J]. Can J PhysiolPharmacol, 2019, 97(3): 155-157. PMID: 30089217. DOI: 10.1139/cjpp-2018-0240.
3 Garafova A, Kornanova E, Chovancova D, et al. Relationships between antenatal corticosteroids and catecholamine blood pressure support in neonates: considering of maternal stress-related diseases[J]. Stress, 2020, 23(6): 694-699. PMID: 32762500. DOI: 10.1080/10253890.2020.1806227.
4 Davis EP, Sandman CA, Buss C, et al. Fetal glucocorticoid exposure is associated with preadolescent brain development[J]. Biol Psychiatry, 2013, 74(9): 647-655. PMID: 23611262. PMCID: PMC3985475. DOI: 10.1016/j.biopsych.2013.03.009.
5 R?ikk?nen K, Gissler M, Kajantie E. Associations between maternal antenatal corticosteroid treatment and mental and behavioral disorders in children[J]. JAMA, 2020, 323(19): 1924-1933. PMID: 32427304. PMCID: PMC7237984. DOI: 10.1001/jama.2020.3937.
6 Hutcheon JA, Harper S, Liauw J, et al. Antenatal corticosteroid administration and early school age child development: a regression discontinuity study in British Columbia, Canada[J]. PLoS Med, 2020, 17(12): e1003435. PMID: 33284805. PMCID: PMC7721186. DOI: 10.1371/journal.pmed.1003435.
7 Franks AL, Berry KJ, DeFranco DB. Prenatal drug exposure and neurodevelopmental programming of glucocorticoid signalling[J]. J Neuroendocrinol, 2020, 32(1): e12786. PMID: 31469457. PMCID: PMC6982551. DOI: 10.1111/jne.12786.
8 Tsiarli MA, Rudine A, Kendall N, et al. Antenatal dexamethasone exposure differentially affects distinct cortical neural progenitor cells and triggers long-term changes in murine cerebral architecture and behavior[J]. Transl Psychiatry, 2017, 7(6): e1153. PMID: 28608856. PMCID: PMC5537650. DOI: 10.1038/tp.2017.65.
9 Malaeb SN, Stonestreet BS. Steroids and injury to the developing brain: net harm or net benefit?[J]. Clin Perinatol, 2014, 41(1): 191-208. PMID: 24524455. PMCID: PMC5083968. DOI: 10.1016/j.clp.2013.09.006.
10 Onland W, Offringa M, De Jaegere AP, et al. Finding the optimal postnatal dexamethasone regimen for preterm infants at risk of bronchopulmonary dysplasia: a systematic review of placebo-controlled trials[J]. Pediatrics, 2009, 123(1): 367-377. PMID: 19117904. DOI: 10.1542/peds.2008-0016.
11 Cheong JLY, Doyle LW. Long-term effects of postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia: balancing the risks and benefits[J]. Semin Fetal Neonatal Med, 2019, 24(3): 197-201. PMID: 30962159. DOI: 10.1016/j.siny.2019.03.002.
12 Doyle LW, Cheong JL, Ehrenkranz RA, et al. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants[J]. Cochrane Database Syst Rev, 2017, 10(10): CD001146. PMID: 29063585. PMCID: PMC6485683. DOI: 10.1002/14651858.CD001146.pub5.
13 Bassler D, Shinwell ES, Hallman M, et al. Long-term effects of inhaled budesonide for bronchopulmonary dysplasia[J]. N Engl J Med, 2018, 378(2): 148-157. PMID: 29320647. DOI: 10.1056/NEJMoa1708831.
14 Shah SS, Ohlsson A, Halliday HL, et al. Inhaled versus systemic corticosteroids for preventing bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates[J]. Cochrane Database Syst Rev, 2017, 10(10): CD002058. PMID: 29041034. PMCID: PMC6485718. DOI: 10.1002/14651858.CD002058.pub3.
15 Favrais G, Tourneux P, Lopez E, et al. Impact of common treatments given in the perinatal period on the developing brain[J]. Neonatology, 2014, 106(3): 163-172. PMID: 25012048. DOI: 10.1159/000363492.
16 Marlow N, Bower H, Jones D, et al. The ORACLE children study: educational outcomes at 11 years of age following antenatal prescription of erythromycin or co-amoxiclav[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(2): F131-F135. PMID: 27515985. PMCID: PMC5339554. DOI: 10.1136/archdischild-2015-310144.
17 Videman K, Hallamaa L, Heimonen O, et al. Child growth and neurodevelopment after maternal antenatal antibiotic treatment[J]. Arch Dis Child, 2021. PMID: 34479861. DOI: 10.1136/archdischild-2021-322043. Epub ahead of print.
18 Champagne-Jorgensen K, Mian MF, Kay S, et al. Prenatal low-dose penicillin results in long-term sex-specific changes to murine behaviour, immune regulation, and gut microbiota[J]. Brain Behav Immun, 2020, 84: 154-163. PMID: 31785396. DOI: 10.1016/j.bbi.2019.11.020.
19 Slykerman RF, Coomarasamy C, Wickens K, et al. Exposure to antibiotics in the first 24 months of life and neurocognitive outcomes at 11 years of age[J]. Psychopharmacology (Berl), 2019, 236(5): 1573-1582. PMID: 31041458. DOI: 10.1007/s00213-019-05216-0.
20 Kayyal M, Javkar T, Firoz Mian M, et al. Sex dependent effects of post-natal penicillin on brain, behavior and immune regulation are prevented by concurrent probiotic treatment[J]. Sci Rep, 2020, 10(1): 10318. PMID: 32587382. PMCID: PMC7316860. DOI: 10.1038/s41598-020-67271-4.
21 Siahanidou T, Spiliopoulou C. Pharmacological neuroprotection of the preterm brain: current evidence and perspectives[J]. Am J Perinatol, 2020. PMID: 32961562. DOI: 10.1055/s-0040-1716710. Epub ahead of print.
22 Koning G, Leverin AL, Nair S, et al. Magnesium induces preconditioning of the neonatal brain via profound mitochondrial protection[J]. J Cereb Blood Flow Metab, 2019, 39(6): 1038-1055. PMID: 29206066. PMCID: PMC6547197. DOI: 10.1177/0271678X17746132.
23 Chollat C, Bertrand E, Petit-Ledo A, et al. Cerebral palsy in very preterm infants: a nine-year prospective study in a French population-based tertiary center[J]. J Pediatr, 2021, 237: 183-189.e6. PMID: 34144033. DOI: 10.1016/j.jpeds.2021.06.018.
24 Iqbal N, Younus J, Malik M, et al. The neuroprotective efficacy of postnatal magnesium sulfate in term or near-term infants with moderate-to-severe birth asphyxia[J]. Cureus, 2021, 13(8): e16826. PMID: 34513419. PMCID: PMC8407416. DOI: 10.7759/cureus.16826.
25 Galinsky R, Dean JM, Lingam I, et al. A systematic review of magnesium sulfate for perinatal neuroprotection: what have we learnt from the past decade?[J]. Front Neurol, 2020, 11: 449. PMID: 32536903. PMCID: PMC7267212. DOI: 10.3389/fneur.2020.00449.
26 平萍, 袁天明. 早产儿脑损伤神经保护研究进展[J]. 中华新生儿科杂志, 2021, 36(1): 65-68. DOI: 10.3760/cma.j.issn.2096-2932.2021.01.018.
27 Aryana P, Rajaei S, Bagheri A, et al. Acute effect of intravenous administration of magnesium sulfate on serum levels of interleukin-6 and tumor necrosis factor-α in patients undergoing elective coronary bypass graft with cardiopulmonary bypass[J]. Anesth Pain Med, 2014, 4(3): e16316. PMID: 25237633. PMCID: PMC4165031. DOI: 10.5812/aapm.16316.
28 Mercanti I, Ligi I, Boubred F, et al. Ibubrofen in the treatment of patent ductus arteriosus in preterm infants: what we know, what we still do not know[J]. Curr Pharm Des, 2012, 18(21): 3007-3018. PMID: 22564295. DOI: 10.2174/1381612811209023007.
29 Ment LR, Peterson BS, Meltzer JA, et al. A functional magnetic resonance imaging study of the long-term influences of early indomethacin exposure on language processing in the brains of prematurely born children[J]. Pediatrics, 2006, 118(3): 961-970. PMID: 16950986. PMCID: PMC2364718. DOI: 10.1542/peds.2005-2870.
30 Ohlsson A, Shah SS. Ibuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants[J]. Cochrane Database Syst Rev, 2020, 1(1): CD004213. PMID: 31985838. PMCID: PMC6984616. DOI: 10.1002/14651858.CD004213.pub5.
31 Gupta S, Juszczak E, Hardy P, et al. Study protocol: baby-OSCAR trial: outcome after selective early treatment for closure of patent ductus arteriosus in preterm babies, a multicentre, masked, randomised placebo-controlled parallel group trial[J]. BMC Pediatr, 2021, 21(1): 100. PMID: 33637074. PMCID: PMC7908699. DOI: 10.1186/s12887-021-02558-7.
32 Juuj?rvi S, Kallankari H, P?tsi P, et al. Follow-up study of the early, randomised paracetamol trial to preterm infants, found no adverse reactions at the two-years corrected age[J]. Acta Paediatr, 2019, 108(3): 452-458. PMID: 30325529. DOI: 10.1111/apa.14614.
33 Juuj?rvi S, Saarela T, Hallman M, et al. Trial of paracetamol for premature newborns: five-year follow-up[J]. J Matern Fetal Neonatal Med, 2021, 21: 1-3. PMID: 33478294. DOI: 10.1080/14767058.2021.1875444.
34 Richards LA, Schonhoff CM. Nitric oxide and sex differences in dendritic branching and arborization[J]. J Neurosci Res, 2021, 99(5): 1390-1400. PMID: 33538046. DOI: 10.1002/jnr.24789.
35 Angelis D, Savani R, Chalak L. Nitric oxide and the brain. Part 2: effects following neonatal brain injury—friend or foe?[J]. Pediatr Res, 2021, 89(4): 746-752. PMID: 32563184. DOI: 10.1038/s41390-020-1021-4.
36 Kajimoto M, Nuri M, Sleasman JR, et al. Inhaled nitric oxide reduces injury and microglia activation in porcine hippocampus after deep hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg, 2021, 161(6): e485-e498. PMID: 32037238. PMCID: PMC8673826. DOI: 10.1016/j.jtcvs.2019.12.075.
37 Angelis D, Savani R, Chalak L. Nitric oxide and the brain. Part 1: mechanisms of regulation, transport and effects on the developing brain[J]. Pediatr Res, 2021, 89(4): 738-745. PMID: 32563183. DOI: 10.1038/s41390-020-1017-0.
38 Donohue PK, Gilmore MM, Cristofalo E, et al. Inhaled nitric oxide in preterm infants: a systematic review[J]. Pediatrics, 2011, 127(2): e414-e422. PMID: 21220391. DOI: 10.1542/peds.2010-3428.
39 Fauchère JC, Koller BM, Tschopp A, et al. Safety of early high-dose recombinant erythropoietin for neuroprotection in very preterm infants[J]. J Pediatr, 2015, 167(1): 52-57.e3. PMID: 25863661. DOI: 10.1016/j.jpeds.2015.02.052.
40 Law JB, Comstock BA, Richards TL, et al. Diffusion tensor imaging changes do not affect long-term neurodevelopment following early erythropoietin among extremely preterm infants in the preterm erythropoietin neuroprotection trial[J]. Brain Sci, 2021, 11(10): 1360. PMID: 34679424. PMCID: PMC8533828. DOI: 10.3390/brainsci11101360.
41 Fischer HS, Reibel NJ, Bührer C, et al. Prophylactic erythropoietin for neuroprotection in very preterm infants: a meta-analysis update[J]. Front Pediatr, 2021, 9: 657228. PMID: 34095027. PMCID: PMC8173165. DOI: 10.3389/fped.2021.657228.
42 Gonzalez FF, Larpthaveesarp A, McQuillen P, et al. Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke[J]. Stroke, 2013, 44(3): 753-758. PMID: 23391775. PMCID: PMC3689426. DOI: 10.1161/STROKEAHA.111.000104.
43 Juul SE, Comstock BA, Wadhawan R, et al. A randomized trial of erythropoietin for neuroprotection in preterm infants[J]. N Engl J Med, 2020, 382(3): 233-243. PMID: 31940698. PMCID: PMC7060076. DOI: 10.1056/NEJMoa1907423.
44 Williamson M, Poorun R, Hartley C. Apnoea of prematurity and neurodevelopmental outcomes: current understanding and future prospects for research[J]. Front Pediatr, 2021, 9: 755677. PMID: 34760852. PMCID: PMC8573333. DOI: 10.3389/fped.2021.755677.
45 Lodha A, Entz R, Synnes A, et al. Early caffeine administration and neurodevelopmental outcomes in preterm infants[J]. Pediatrics, 2019, 143(1): e20181348. PMID: 30518670. DOI: 10.1542/peds.2018-1348.
46 Schmidt B, Roberts RS, Anderson PJ, et al. Academic performance, motor function, and behavior 11 years after neonatal caffeine citrate therapy for apnea of prematurity: an 11-year follow-up of the cap randomized clinical trial[J]. JAMA Pediatr, 2017, 171(6): 564-572. PMID: 28437520. DOI: 10.1001/jamapediatrics.2017.0238.
47 Schmidt B, Roberts RS, Davis P, et al. Long-term effects of caffeine therapy for apnea of prematurity[J]. N Engl J Med, 2007, 357(19): 1893-1902. PMID: 17989382. DOI: 10.1056/NEJMoa073679.
48 Firman B, Molnar A, Gray PH. Early high-dose caffeine citrate for extremely preterm infants: neonatal and neurodevelopmental outcomes[J]. J Paediatr Child Health, 2019, 55(12): 1451-1457. PMID: 30900326. DOI: 10.1111/jpc.14446.
49 Atik A, De Matteo R, Boomgardt M, et al. Impact of high-dose caffeine on the preterm ovine cerebrum and cerebellum[J]. Front Physiol, 2019, 10: 990. PMID: 31427988. PMCID: PMC6688582. DOI: 10.3389/fphys.2019.00990.
50 Gunkel JH, Banks PL. Surfactant therapy and intracranial hemorrhage: review of the literature and results of new analyses[J]. Pediatrics, 1993, 92(6): 775-786. PMID: 8233736.
51 Sinn JKH, Ward MC, Henderson-Smart DJ. Developmental outcome of preterm infants after surfactant therapy: systematic review of randomized controlled trials[J]. J Paediatr Child Health, 2002, 38(6): 597-600. PMID: 12410874. DOI: 10.1046/j.1440-1754.2002.00061.x.
52 汤泽中, 侯新琳, 刘黎黎. 亚低温治疗过程中缺氧缺血性脑病新生儿脑血流动力学改变及近红外光谱监测的意义[J]. 中华围产医学杂志, 2020, 23(10): 673-678. DOI: 10.3760/cma.j.cn113903-20200608-00538.
53 Silveira RC, Procianoy RS. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy[J]. J Pediatr (Rio J), 2015, 91(6 Suppl 1): S78-S83. PMID: 26354871. DOI: 10.1016/j.jped.2015.07.004.
54 邹蓉, 母得志. 新生儿缺氧缺血性脑病能量衰竭的防治[J]. 中国当代儿科杂志, 2016, 18(9): 915-920. PMID: 27655554. PMCID: PMC7389965. DOI: 10.7499/j.issn.1008-8830.2016.09.024.
55 Al Yazidi G, Boudes E, Tan XM, et al. Intraventricular hemorrhage in asphyxiated newborns treated with hypothermia: a look into incidence, timing and risk factors[J]. BMC Pediatr, 2015, 15: 106. PMID: 26315402. PMCID: PMC4551518. DOI: 10.1186/s12887-015-0415-7.
56 Disdier C, Chen XD, Kim JE, et al. Anti-cytokine therapy to attenuate ischemic-reperfusion associated brain injury in the perinatal period[J]. Brain Sci, 2018, 8(6): 101. PMID: 29875342. PMCID: PMC6025309. DOI: 10.3390/brainsci8060101.
57 American College of Obstetricians and Gynecologists' Committee on Obstetric Practice. Delayed umbilical cord clamping after birth: ACOG committee opinion, number 814[J]. Obstet Gynecol, 2020, 136(6): e100-e106. PMID: 33214530. DOI: 10.1097/AOG.0000000000004167.
PDF(525 KB)

Accesses

Citation

Detail

Sections
Recommended

/