Objective To study the effect of sex on the clinical outcome of extremely preterm infants (EPIs)/extremely low birth weight infants (ELBWIs) by propensity score matching. Methods A retrospective analysis was performed for the medical data of 731 EPIs or ELBWIs who were admitted from January 1, 2011 to December 31, 2020. These infants were divided into two groups: male and female. A propensity score matching analysis was performed at a ratio of 1:1. The matching variables included gestational age, birth weight, percentage of withdrawal from active treatment, percentage of small-for-gestational-age infant, percentage of use of pulmonary surfactant, percentage of 1-minute Apgar score ≤3, percentage of mechanical ventilation, duration of mechanical ventilation, percentage of antenatal use of inadequate glucocorticoids, and percentage of hypertensive disorders in pregnancy. The two groups were compared in the incidence rate of main complications during hospitalization and the rate of survival at discharge. Results Before matching, compared with the female group, the male group had significantly higher incidence rates of neonatal respiratory distress syndrome, bronchopulmonary dysplasia (BPD), severe intraventricular hemorrhage, periventricular leukomalacia, necrotizing enterocolitis, and patent ductus arteriosus (P<0.05), while after matching, the male group only had a significantly higher incidence rate of BPD than the female group (P<0.05). There was no significant difference in the rate of survival at discharge between the two groups before and after matching (P>0.05). Conclusions Male EPIs/ELBWIs have a higher risk of BPD than female EPIs/ELBWIs, but male and female EPIs/ELBWIs tend to have similar outcomes. Citation:Chinese Journal of Contemporary Pediatrics, 2022, 24(5): 514-520
Key words
Sex /
Clinical outcome /
Propensity score matching /
Extremely preterm infant /
Extremely low birth weight infant
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
1 Fr?hlich M, Tissen-Diabaté T, Bührer C, et al. Sex-specific long-term trends in length of hospital stay, postmenstrual age at discharge, and survival in very low birth weight infants[J]. Neonatology, 2021, 118(4): 416-424. PMID: 34091458. PMCID: PMC8491473. DOI: 10.1159/000515899.
2 Vu HD, Dickinson C, Kandasamy Y. Sex difference in mortality for premature and low birth weight neonates: a systematic review[J]. Am J Perinatol, 2018, 35(8): 707-715. PMID: 29241280. DOI: 10.1055/s-0037-1608876.
3 Ito M, Tamura M, Namba F, et al. Role of sex in morbidity and mortality of very premature neonates[J]. Pediatr Int, 2017, 59(8): 898-905. PMID: 28477387. DOI: 10.1111/ped.13320.
4 Rosenkrantz TS, Hussain Z, Fitch RH. Sex differences in brain injury and repair in newborn infants: clinical evidence and biological mechanisms[J]. Front Pediatr, 2019, 7: 211. PMID: 31294000. PMCID: PMC6606734. DOI: 10.3389/fped.2019.00211.
5 Boghossian NS, Geraci M, Edwards EM, et al. Sex differences in mortality and morbidity of infants born at less than 30 weeks' gestation[J]. Pediatrics, 2018, 142(6): e20182352. PMID: 30429272. DOI: 10.1542/peds.2018-2352.
6 Garfinkle J, Yoon EW, Alvaro R, et al. Trends in sex-specific differences in outcomes in extreme preterms: progress or natural barriers?[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(2): 158-163. PMID: 31186268. DOI: 10.1136/archdischild-2018-316399.
7 Shim SY, Cho SJ, Kong KA, et al. Gestational age-specific sex difference in mortality and morbidities of preterm infants: a nationwide study[J]. Sci Rep, 2017, 7(1): 6161. PMID: 28733681. PMCID: PMC5522396. DOI: 10.1038/s41598-017-06490-8.
8 Binet ME, Bujold E, Lefebvre F, et al. Role of gender in morbidity and mortality of extremely premature neonates[J]. Am J Perinatol, 2012, 29(3): 159-166. PMID: 21818733. DOI: 10.1055/s-0031-1284225.
9 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 5版. 北京: 人民卫生出版社, 2019: 527-1029.
10 Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm[J]. J Pediatr, 1978, 92(4): 529-534. PMID: 305471. DOI: 10.1016/s0022-3476(78)80282-0.
11 中华人民共和国卫生部. 医院感染诊断标准(试行)[J]. 中华医学杂志, 2001, 81(5): 314-320. DOI: 10.3760/j:issn:0376-2491.2001.05.027.
12 谢幸, 孔北华, 段涛. 妇产科学[M]. 9版. 北京: 人民卫生出版社, 2018: 43-159.
13 超未成熟儿与超低出生体重儿研究协作组. 超未成熟儿与超低出生体重儿产前糖皮质激素使用情况及其对预后影响的多中心调查[J]. 中华围产医学杂志, 2020, 23(5): 302-310. DOI: 10.3760/cma.j.cn113903-20190823-00512.
14 周南君, 赖洁, 蒋良艳, 等. 亚低温可延缓卒中后感染的发生: 一项倾向性评分配对队列研究结果[J]. 中华危重病急救医学, 2019, 31(12): 1435-1439. PMID: 32029025. DOI: 10.3760/cma.j.issn.2095-4352.2019.12.001.
15 Rysavy MA, Horbar JD, Bell EF, et al. Assessment of an updated neonatal research network extremely preterm birth outcome model in the Vermont Oxford Network[J]. JAMA Pediatr, 2020, 174(5): e196294. PMID: 32119065. PMCID: PMC7052789. DOI: 10.1001/jamapediatrics.2019.6294.
16 Thébaud B, Goss KN, Laughon M, et al. Bronchopulmonary dysplasia[J]. Nat Rev Dis Primers, 2019, 5(1): 78. PMID: 31727986. PMCID: PMC6986462. DOI: 10.1038/s41572-019-0127-7.
17 Huang J, Zhang L, Kang B, et al. Association between perinatal hypoxic-ischemia and periventricular leukomalacia in preterm infants: a systematic review and meta-analysis[J]. PLoS One, 2017, 12(9): e0184993. PMID: 28931047. PMCID: PMC5607162. DOI: 10.1371/journal.pone.0184993.
18 Boghossian NS, Geraci M, Edwards EM, et al. Morbidity and mortality in small for gestational age infants at 22 to 29 weeks' gestation[J]. Pediatrics, 2018, 141(2): e20172533. PMID: 29348195. DOI: 10.1542/peds.2017-2533.
19 Nakamura N, Ushida T, Nakatochi M, et al. Mortality and neurological outcomes in extremely and very preterm infants born to mothers with hypertensive disorders of pregnancy[J]. Sci Rep, 2021, 11(1): 1729. PMID: 33462302. PMCID: PMC7814115. DOI: 10.1038/s41598-021-81292-7.
20 Gemmell L, Martin L, Murphy KE, et al. Hypertensive disorders of pregnancy and outcomes of preterm infants of 24 to 28 weeks' gestation[J]. J Perinatol, 2016, 36(12): 1067-1072. PMID: 27583388. DOI: 10.1038/jp.2016.133.
21 Charles E, Hunt KA, Harris C, et al. Small for gestational age and extremely low birth weight infant outcomes[J]. J Perinat Med, 2019, 47(2): 247-251. PMID: 30335614. DOI: 10.1515/jpm-2018-0295.
22 Gortner L, Shen J, Tutdibi E. Sexual dimorphism of neonatal lung development[J]. Klin Padiatr, 2013, 225(2): 64-69. PMID: 23526610. DOI: 10.1055/s-0033-1333758.
23 Patrone C, Cassel TN, Pettersson K, et al. Regulation of postnatal lung development and homeostasis by estrogen receptor beta[J]. Mol Cell Biol, 2003, 23(23): 8542-8552. PMID: 14612399. PMCID: PMC262653. DOI: 10.1128/MCB.23.23.8542-8552.2003.
24 Seaborn T, Simard M, Provost PR, et al. Sex hormone metabolism in lung development and maturation[J]. Trends Endocrinol Metab, 2010, 21(12): 729-738. PMID: 20971653. DOI: 10.1016/j.tem.2010.09.001.
25 Dammann CE, Ramadurai SM, McCants DD, et al. Androgen regulation of signaling pathways in late fetal mouse lung development[J]. Endocrinology, 2000, 141(8): 2923-2929. PMID: 10919280. DOI: 10.1210/endo.141.8.7615.
26 Avorgbedor F, Gondwe KW, Zou B, et al. A systematic review on outcomes of preterm small for gestational infants born to women with hypertensive disorders in pregnancy[J]. J Perinat Neonatal Nurs, 2021, 35(4): E58-E68. PMID: 34726657. DOI: 10.1097/JPN.0000000000000603.
27 Bossung V, Fortmann MI, Fusch C, et al. Neonatal outcome after preeclampsia and HELLP syndrome: a population-based cohort study in Germany[J]. Front Pediatr, 2020, 8: 579293. PMID: 33154958. PMCID: PMC7586782. DOI: 10.3389/fped.2020.579293.