Very-early and early neuroelectrophysiological features of childhood Guillain-Barré syndrome

SUN Rui-Di, JIANG Jun, LIU Zhi-Sheng

Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (9) : 979-983.

PDF(542 KB)
PDF(542 KB)
Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (9) : 979-983. DOI: 10.7499/j.issn.1008-8830.2203022
CLINICAL RESEARCH

Very-early and early neuroelectrophysiological features of childhood Guillain-Barré syndrome

  • SUN Rui-Di, JIANG Jun, LIU Zhi-Sheng
Author information +
History +

Abstract

Objective To study the very-early and early neuroelectrophysiological features of childhood Guillain-Barré syndrome (GBS) and their association with clinical diagnosis. Methods A retrospective analysis was performed on the neuroelectrophysiological data of 43 children with GBS. According to the interval from onset to neuroelectrophysiological examination, the children were divided into a very-early examination group with 18 children (an interval from onset to the examination of ≤7 days) and an early examination group with 25 children (an interval from onset to the examination of 7 to ≤14 days). The children with acute flaccid paralysis, matched for the examination time of GBS children, were enrolled as the control group. The abnormal rates of neuroelectrophysiological parameters were compared between the above groups. According to the results of the H reflex test, the GBS children were divided into an abnormal H reflex group and a normal H reflex group, and related clinical data were compared between the two groups. Results Compared with the control group, the very-early and early examination groups had a significantly higher abnormal rate of H reflex (P<0.05), while there was no significant difference in the abnormal rates of F wave, motor nerve conduction, and sensory nerve conduction (P>0.05). Compared with the normal H reflex group, the abnormal H reflex group had a significantly shorter interval from onset to the time of confirmed diagnosis (P<0.05). Conclusions Absence of the H reflex is a valuable parameter of neuroelectrophysiological abnormalities in the early stage of GBS and can help with the diagnosis of GBS. Citation:Chinese Journal of Contemporary Pediatrics, 2022, 24(9): 979-983

Key words

Guillain-Barré syndrome / H reflex / Child

Cite this article

Download Citations
SUN Rui-Di, JIANG Jun, LIU Zhi-Sheng. Very-early and early neuroelectrophysiological features of childhood Guillain-Barré syndrome[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(9): 979-983 https://doi.org/10.7499/j.issn.1008-8830.2203022

References

1 Karalok ZS, Taskin BD, Yanginlar ZB, et al. Guillain-Barré syndrome in children: subtypes and outcome[J]. Childs Nerv Syst, 2018, 34(11): 2291-2297. PMID: 29948140. DOI: 10.1007/s00381-018-3856-0.
2 Fokke C, van den Berg B, Drenthen J, et al. Diagnosis of Guillain-Barré syndrome and validation of Brighton criteria[J]. Brain, 2014, 137(Pt 1): 33-43. PMID: 24163275. DOI: 10.1093/brain/awt285.
3 Hughes RA, Swan AV, van Doorn PA. Intravenous immunoglobulin for Guillain-Barré syndrome[J]. Cochrane Database Syst Rev, 2014, 2014(9): CD002063. PMID: 25238327. PMCID: PMC6781841. DOI: 10.1002/14651858.CD002063.pub6.
4 Estrade S, Guiomard C, Fabry V, et al. Prognostic factors for the sequelae and severity of Guillain-Barré syndrome in children[J]. Muscle Nerve, 2019, 60(6): 716-723. PMID: 31531862. DOI: 10.1002/mus.26706.
5 Mani AM, Prabhakar AT, Alexander PT, et al. Utility of serial nerve conduction studies in the electrodiagnosis of Guillain-Barre syndrome[J]. Neurol India, 2021, 69(2): 369-375. PMID: 33904455. DOI: 10.4103/0028-3886.314529.
6 Tan CY, Sekiguchi Y, Goh KJ, et al. A model to predict the probability of acute inflammatory demyelinating polyneuropathy[J]. Clin Neurophysiol, 2020, 131(1): 63-69. PMID: 31751842. DOI: 10.1016/j.clinph.2019.09.025.
7 Kalita J, Misra UK, Das M. Neurophysiological criteria in the diagnosis of different clinical types of Guillain-Barre syndrome[J]. J Neurol Neurosurg Psychiatry, 2008, 79(3): 289-293. PMID: 17615164. DOI: 10.1136/jnnp.2007.118000.
8 Chanson JB, Echaniz-Laguna A. Early electrodiagnostic abnormalities in acute inflammatory demyelinating polyneuropathy: a retrospective study of 58 patients[J]. Clin Neurophysiol, 2014, 125(9): 1900-1905. PMID: 24529487. DOI: 10.1016/j.clinph.2014.01.007.
9 Magistris MR, Sukockien? E, Truffert A. Does impaired conduction of Ia afferents explain early tendon areflexia in Guillain-Barré Syndrome?[J]. Clin Neurophysiol, 2021, 132(1): 104-105. PMID: 33259977. DOI: 10.1016/j.clinph.2020.11.004.
10 Kuwabara S, Sekiguchi Y, Misawa S. Electrophysiology in Fisher syndrome[J]. Clin Neurophysiol, 2017, 128(1): 215-219. PMID: 27923188. DOI: 10.1016/j.clinph.2016.11.009.
11 Teigland OH, Pugdahl K, Fuglsang-Frederiksen A, et al. Utility of the H-reflex in diagnosing polyneuropathy[J]. Muscle Nerve, 2019, 60(4): 424-428. PMID: 31325167. DOI: 10.1002/mus.26639.
12 Dachy B, Deltenre P, Deconinck N, et al. The H reflex as a diagnostic tool for Miller Fisher syndrome in pediatric patients[J]. J Clin Neurosci, 2010, 17(3): 410-411. PMID: 20071180. DOI: 10.1016/j.jocn.2009.06.014.
13 Wakerley BR, Uncini A, Yuki N, et al. Guillain-Barré and Miller Fisher syndromes—new diagnostic classification[J]. Nat Rev Neurol, 2014, 10(9): 537-544. PMID: 25072194. DOI: 10.1038/nrneurol.2014.138.
14 Bitnun A, Yeh EA. Acute flaccid paralysis and enteroviral infections[J]. Curr Infect Dis Rep, 2018, 20(9): 34. PMID: 29959591. DOI:10.1007/s11908-018-0641-x.
15 Uncini A, Ippoliti L, Shahrizaila N, et al. Optimizing the electrodiagnostic accuracy in Guillain-Barré syndrome subtypes: criteria sets and sparse linear discriminant analysis[J]. Clin Neurophysiol, 2017, 128(7): 1176-1183. PMID: 28521265. DOI: 10.1016/j.clinph.2017.03.048.
16 党静霞. 肌电图诊断与临床应用[M]. 2版. 北京: 人民卫生出版社, 2013: 65-71.
17 孙瑞迪, 江军, 刘智胜. 运动神经传导阻滞与儿童吉兰-巴雷综合征不同亚型间的关系[J]. 中国当代儿科杂志, 2020, 22(9): 970-974. PMID: 32933628. PMCID: PMC7499442. DOI: 10.7499/j.issn.1008-8830.2003048.
18 Freiha J, Zoghaib R, Makhoul K, et al. The value of sensory nerve conduction studies in the diagnosis of Guillain-Barré syndrome[J]. Clin Neurophysiol, 2021, 132(5): 1157-1162. PMID: 33780722. DOI: 10.1016/j.clinph.2021.02.013.
19 Ye Y, Zhu D, Liu L, et al. Electrophysiological measurement at Erb's point during the early stage of Guillain-Barré syndrome[J]. J Clin Neurosci, 2014, 21(5): 786-789. PMID: 24412297. DOI: 10.1016/j.jocn.2013.07.022.
20 Barzegar M, Toopchizadeh V, Golalizadeh D, et al. A predictive model for respiratory failure and determining the risk factors of prolonged mechanical ventilation in children with Guillain-Barre syndrome[J]. Iran J Child Neurol, 2020, 14(3): 33-46. PMID: 32952580. PMCID: PMC7468085.
21 Berciano J, Orizaola P, Gallardo E, et al. Very early Guillain-Barré syndrome: a clinical-electrophysiological and ultrasonographic study[J]. Clin Neurophysiol Pract, 2020, 5: 1-9. PMID: 31886449. PMCID: PMC6923288. DOI: 10.1016/j.cnp.2019.11.003.
22 Berciano J. Inflammatory oedema of nerve trunks may be pathogenic in very early Guillain-Barré syndrome[J]. Acta Neurol Belg, 2020, 120(5): 1061-1065. PMID: 32557265. DOI: 10.1007/s13760-020-01413-3.
23 Rasera A, Romito S, Segatti A, et al. Very early and early neurophysiological abnormalities in Guillain-Barré syndrome: a 4-year retrospective study[J]. Eur J Neurol, 2021, 28(11): 3768-3773. PMID: 34233056. PMCID: PMC8596904. DOI: 10.1111/ene.15011.
PDF(542 KB)

Accesses

Citation

Detail

Sections
Recommended

/