Involvement of retinoic acid receptor α in the autistic-like behavior of rats with vitamin A deficiency by regulating neurexin 1 in the visual cortex: a mechanism study

LI Li-Sha, ZHANG Qian, LIU Huan, WU Qiong-Hui, YANG Ting, CHEN Jie, LI Ting-Yu

Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (8) : 928-935.

PDF(1797 KB)
PDF(1797 KB)
Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (8) : 928-935. DOI: 10.7499/j.issn.1008-8830.2204016
EXPERIMENTAL RESEARCH

Involvement of retinoic acid receptor α in the autistic-like behavior of rats with vitamin A deficiency by regulating neurexin 1 in the visual cortex: a mechanism study

  • LI Li-Sha, ZHANG Qian, LIU Huan, WU Qiong-Hui, YANG Ting, CHEN Jie, LI Ting-Yu
Author information +
History +

Abstract

Objective To study the mechanism of retinoic acid receptor α (RARα) signal change to regulate neurexin 1 (NRXN1) in the visual cortex and participate in the autistic-like behavior in rats with vitamin A deficiency (VAD). Methods The models of vitamin A normal (VAN) and VAD pregnant rats were established, and some VAD maternal and offspring rats were given vitamin A supplement (VAS) in the early postnatal period. Behavioral tests were performed on 20 offspring rats in each group at the age of 6 weeks. The three-chamber test and the open-field test were used to observe social behavior and repetitive stereotyped behavior. High-performance liquid chromatography was used to measure the serum level of retinol in the offspring rats in each group. Electrophysiological experiments were used to measure the long-term potentiation (LTP) level of the visual cortex in the offspring rats. Quantitative real-time PCR and Western blot were used to measure the expression levels of RARα, NRXN1, and N-methyl-D-aspartate receptor 1 (NMDAR1). Chromatin co-immunoprecipitation was used to measure the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene. Results The offspring rats in the VAD group had autistic-like behaviors such as impaired social interactions and repetitive stereotypical behaviors, and VAS started immediately after birth improved most of the behavioral deficits in offspring rats. The offspring rats in the VAD group had a significantly lower serum level of retinol than those in the VAN and VAS groups (P<0.05). Compared with the offspring rats in the VAN and VAS groups, the offspring rats in the VAD group had significant reductions in the mRNA and protein expression levels of NMDAR1, RARα, and NRXN1 and the LTP level of the visual cortex (P<0.05). The offspring rats in the VAD group had a significant reduction in the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene in the visual cortex compared with those in the VAN and VAS groups (P<0.05). Conclusions RARα affects the synaptic plasticity of the visual cortex in VAD rats by regulating NRXN1, thereby participating in the formation of autistic-like behaviors in VAD rats.

Key words

Autistic-like behavior / Vitamin A / Retinoic acid receptor α / Neurexin 1 / Synaptic plasticity / Rat

Cite this article

Download Citations
LI Li-Sha, ZHANG Qian, LIU Huan, WU Qiong-Hui, YANG Ting, CHEN Jie, LI Ting-Yu. Involvement of retinoic acid receptor α in the autistic-like behavior of rats with vitamin A deficiency by regulating neurexin 1 in the visual cortex: a mechanism study[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(8): 928-935 https://doi.org/10.7499/j.issn.1008-8830.2204016

References

1 Hombali AS, Solon JA, Venkatesh BT, et al. Fortification of staple foods with vitamin A for vitamin A deficiency[J]. Cochrane Database Syst Rev, 2019, 5(5): CD010068. PMID: 31074495. PMCID: PMC6509778. DOI: 10.1002/14651858.CD010068.pub2.
2 Mottron L, Bzdok D. Autism spectrum heterogeneity: fact or artifact?[J]. Mol Psychiatry, 2020, 25(12): 3178-3185. PMID: 32355335. PMCID: PMC7714694. DOI: 10.1038/s41380-020-0748-y.
3 Liu Z, Wang J, Xu Q, et al. Research progress in vitamin A and autism spectrum disorder[J]. Behav Neurol, 2021, 2021: 5417497. PMID: 34917197. PMCID: PMC8670912. DOI: 10.1155/2021/5417497.
4 Lai X, Zhang Q, Zhu J, et al. A weekly vitamin A supplementary program alleviates social impairment in Chinese children with autism spectrum disorders and vitamin A deficiency[J]. Eur J Clin Nutr, 2021, 75(7): 1118-1125. PMID: 33328600. DOI: 10.1038/s41430-020-00827-9.
5 Lai X, Wu X, Hou N, et al. Vitamin A deficiency induces autistic-like behaviors in rats by regulating the RARβ-CD38-oxytocin axis in the hypothalamus[J]. Mol Nutr Food Res, 2018, 62(5): 1700754. PMID: 29266770. DOI: 10.1002/mnfr.201700754.
6 Hao Z, Wu Q, Li Z, et al. Maternal exposure to triclosan constitutes a yet unrecognized risk factor for autism spectrum disorders[J]. Cell Res, 2019, 29(10): 866-869. PMID: 31462724. PMCID: PMC6796921. DOI: 10.1038/s41422-019-0220-1.
7 Liu H, Tan M, Cheng B, et al. Valproic acid induces autism-like synaptic and behavioral deficits by disrupting histone acetylation of prefrontal cortex ALDH1A1 in rats[J]. Front Neurosci, 2021, 15: 641284. PMID: 33994921. PMCID: PMC8113628. DOI: 10.3389/fnins.2021.641284.
8 Ishizuka K, Yoshida T, Kawabata T, et al. Functional characterization of rare NRXN1 variants identified in autism spectrum disorders and schizophrenia[J]. J Neurodev Disord, 2020, 12(1): 25. PMID: 32942984. PMCID: PMC7496212. DOI: 10.1186/s11689-020-09325-2.
9 Trobiani L, Meringolo M, Diamanti T, et al. The neuroligins and the synaptic pathway in autism spectrum disorder[J]. Neurosci Biobehav Rev, 2020, 119: 37-51. PMID: 32991906. DOI: 10.1016/j.neubiorev.2020.09.017.
10 Xiao J, Chen H, Shan X, et al. Linked social-communication dimensions and connectivity in functional brain networks in autism spectrum disorder[J]. Cereb Cortex, 2021, 31(8): 3899-3910. PMID: 33791779. PMCID: PMC8258445. DOI: 10.1093/cercor/bhab057.
11 Lombardo MV, Eyler L, Moore A, et al. Default mode-visual network hypoconnectivity in an autism subtype with pronounced social visual engagement difficulties[J]. Elife, 2019, 8: e47427. PMID: 31843053. PMCID: PMC6917498. DOI: 10.7554/eLife.47427.
12 Ellis RE, Milne E, Levita L. Reduced visual cortical plasticity in autism spectrum disorder[J]. Brain Res Bull, 2021, 170: 11-21. PMID: 33545310. DOI: 10.1016/j.brainresbull.2021.01.019.
13 Spiegel A, Mentch J, Haskins AJ, et al. Slower binocular rivalry in the autistic brain[J]. Curr Biol, 2019, 29(17): 2948-2953.e3. PMID: 31422885. DOI: 10.1016/j.cub.2019.07.026.
14 Wang S, Liu H, Cheng B, et al. Vitamin A supplementation ameliorates motor incoordination via modulating RORα in the cerebellum in a valproic acid-treated rat autism model with vitamin A deficiency[J]. Neurotoxicology, 2021, 85: 90-98. PMID: 33991534. DOI: 10.1016/j.neuro.2021.05.004.
15 Tian Y, Li T, Sun M, et al. Neurexin regulates visual function via mediating retinoid transport to promote rhodopsin maturation[J]. Neuron, 2013, 77(2): 311-322. PMID: 23352167. DOI: 10.1016/j.neuron.2012.11.012.
16 Singh SK, Stogsdill JA, Pulimood NS, et al. Astrocytes assemble thalamocortical synapses by bridging NRX1α and NL1 via hevin[J]. Cell, 2016, 164(1-2): 183-196. PMID: 26771491. PMCID: PMC4715262. DOI: 10.1016/j.cell.2015.11.034.
17 Zhong LR, Chen X, Park E, et al. Retinoic acid receptor RARα-dependent synaptic signaling mediates homeostatic synaptic plasticity at the inhibitory synapses of mouse visual cortex[J]. J Neurosci, 2018, 38(49): 10454-10466. PMID: 30355624. PMCID: PMC6284108. DOI: 10.1523/JNEUROSCI.1133-18.2018.
18 Shibata M, Pattabiraman K, Muchnik SK, et al. Hominini-specific regulation of CBLN2 increases prefrontal spinogenesis[J]. Nature, 2021, 598(7881): 489-494. PMID: 34599306. PMCID: PMC9018127. DOI: 10.1038/s41586-021-03952-y.
19 Cheng B, Zhu J, Yang T, et al. Vitamin A deficiency exacerbates autism-like behaviors and abnormalities of the enteric nervous system in a valproic acid-induced rat model of autism[J]. Neurotoxicology, 2020, 79: 184-190. PMID: 32526256. DOI: 10.1016/j.neuro.2020.06.004.
20 Widmer FC, O'Toole SM, Keller GB. NMDA receptors in visual cortex are necessary for normal visuomotor integration and skill learning[J]. Elife, 2022, 11: e71476. PMID: 35170429. PMCID: PMC8901170. DOI: 10.7554/eLife.71476.
21 Cheng B, Zhu J, Yang T, et al. Vitamin A deficiency increases the risk of gastrointestinal comorbidity and exacerbates core symptoms in children with autism spectrum disorder[J]. Pediatr Res, 2021, 89(1): 211-216. PMID: 32225174. DOI: 10.1038/s41390-020-0865-y.
22 Liu X, Liu J, Xiong X, et al. Correlation between nutrition and symptoms: nutritional survey of children with autism spectrum disorder in Chongqing, China[J]. Nutrients, 2016, 8(5): 294. PMID: 27187463. PMCID: PMC4882707. DOI: 10.3390/nu8050294.
23 Dai J, Aoto J, Südhof TC. Alternative splicing of presynaptic neurexins differentially controls postsynaptic NMDA and AMPA receptor responses[J]. Neuron, 2019, 102(5): 993-1008.e5. PMID: 31005376. PMCID: PMC6554035. DOI: 10.1016/j.neuron.2019.03.032.
24 Kim HG, Kishikawa S, Higgins AW, et al. Disruption of neurexin 1 associated with autism spectrum disorder[J]. Am J Hum Genet, 2008, 82(1): 199-207. PMID: 18179900. PMCID: PMC2253961. DOI: 10.1016/j.ajhg.2007.09.011.
25 Armstrong EC, Caruso A, Servadio M, et al. Assessing the developmental trajectory of mouse models of neurodevelopmental disorders: social and communication deficits in mice with neurexin 1α deletion[J]. Genes Brain Behav, 2020, 19(4): e12630. PMID: 31823470. DOI: 10.1111/gbb.12630.
PDF(1797 KB)

Accesses

Citation

Detail

Sections
Recommended

/