Objective To study the application value of metagenomic next-generation sequencing (mNGS) for pathogen detection in childhood agranulocytosis with fever. Methods A retrospective analysis was performed on the mNGS results of pathogen detection of 116 children with agranulocytosis with fever who were treated from January 2020 to December 2021. Among these children, 38 children with negative mNGS results were enrolled as the negative group, and 78 children with positive results were divided into a bacteria group (n=22), a fungal group (n=23), and a viral group (n=31). Clinical data were compared between groups. Results For the 116 children with agranulocytosis and fever, the median age was 8 years at diagnosis, the median turnaround time of mNGS results was 2 days, and the positive rate of mNGS testing was 67.2% (78/116). Compared with the negative group, the bacterial group had a higher procalcitonin level (P<0.05), the fungal group had higher level of C-reactive protein and positive rate of (1,3)-β-D glucan test/galactomannan test (P<0.05), and the fungal group had a longer duration of fever (P<0.05). Among the 22 positive microbial culture specimens, 9 (41%) were consistent with the mNGS results. Among the 17 positive blood culture specimens, 8 (47%) were consistent with the mNGS results. Treatment was adjusted for 28 children (36%) with the mNGS results, among whom 26 were cured and discharged. Conclusions The mNGS technique has a shorter turnaround time and a higher sensitivity for pathogen detection and can provide evidence for the pathogenic diagnosis of children with agranulocytosis and fever.
Key words
Agranulocytosis with fever /
Metagenomic next-generation sequencing /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
1 Inaba H, Pei D, Wolf J, et al. Infection-related complications during treatment for childhood acute lymphoblastic leukemia[J]. Ann Oncol, 2017, 28(2): 386-392. PMID: 28426102. PMCID: PMC5834143. DOI: 10.1093/annonc/mdw557.
2 Li MJ, Chang HH, Yang YL, et al. Infectious complications in children with acute lymphoblastic leukemia treated with the Taiwan Pediatric Oncology Group protocol: a 16-year tertiary single-institution experience[J]. Pediatr Blood Cancer, 2017, 64(10): e26535. PMID: 28371256. DOI: 10.1002/pbc.26535.
3 中华医学会血液学分会, 中国医师协会血液科医师分会. 中国中性粒细胞缺乏伴发热患者抗菌药物临床应用指南(2020年版)[J]. 中华血液学杂志, 2020, 41(12): 969-978. PMID: 33445842. PMCID: PMC7840550. DOI: 10.3760/cma.j.issn.0253-2727.2020.12.001.
4 Hakim H, Flynn PM, Knapp KM, et al. Etiology and clinical course of febrile neutropenia in children with cancer[J]. J Pediatr Hematol Oncol, 2009, 31(9): 623-629. PMID: 19644403. PMCID: PMC2743072. DOI: 10.1097/MPH.0b013e3181b1edc6.
5 《中华传染病杂志》编辑委员会. 中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J]. 中华传染病杂志, 2020, 38(11): 681-689. DOI: 10.3760/cma.j.cn311365-20200731-00732.
6 韩思雨, 刘建华. 宏基因组二代测序在疑难感染性疾病中的临床应用价值[J]. 中国当代儿科杂志, 2022, 24(2): 210-215. PMID: 35209988. PMCID: PMC8884048. DOI: 10.7499/j.issn.1008-8830.2110064.
7 王娟, 郭张妍, 楚建平, 等. 免疫缺陷并发重症肺炎患儿应用宏基因组二代测序的病原学分析[J]. 中国小儿急救医学, 2021, 28(8): 701-706. DOI: 10.3760/cma.j.issn.1673-4912.2021.08.013.
8 孙华颖, 李白, 刘莹, 等. 儿童急性淋巴细胞白血病合并毛霉菌病3例并文献复习[J]. 中华儿科杂志, 2022, 60(1): 56-61. PMID: 34986625. DOI: 10.3760/cma.j.cn112140-20210711-00571.
9 Goldberg B, Sichtig H, Geyer C, et al. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics[J]. mBio, 2015, 6(6): e01888-15. PMID: 26646014. PMCID: PMC4669390. DOI: 10.1128/mBio.01888-15.
10 Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018, 66(5): 778-788. PMID: 29040428. PMCID: PMC7108102. DOI: 10.1093/cid/cix881.
11 Brown JR, Bharucha T, Breuer J. Encephalitis diagnosis using metagenomics: application of next generation sequencing for undiagnosed cases[J]. J Infect, 2018, 76(3): 225-240. PMID: 29305150. PMCID: PMC7112567. DOI: 10.1016/j.jinf.2017.12.014.
12 Long Y, Zhang Y, Gong Y, et al. Diagnosis of sepsis with cell-free DNA by next-generation sequencing technology in ICU patients[J]. Arch Med Res, 2016, 47(5): 365-371. PMID: 27751370. DOI: 10.1016/j.arcmed.2016.08.004.
13 Grumaz S, Grumaz C, Vainshtein Y, et al. Enhanced performance of next-generation sequencing diagnostics compared with standard of care microbiological diagnostics in patients suffering from septic shock[J]. Crit Care Med, 2019, 47(5): e394-e402. PMID: 30720537. PMCID: PMC6485303. DOI: 10.1097/CCM.0000000000003658.
14 中国医疗保健国际交流促进会临床微生物与感染分会, 中华医学会检验医学分会临床微生物学组, 中华医学会微生物学和免疫学分会临床微生物学组. 血液培养技术用于血流感染诊断临床实践专家共识[J]. 中华检验医学杂志, 2022, 45(2): 105-121. DOI: 10.3760/cma.j.cn114452-20211109-00695.
15 闫晨华, 徐婷, 郑晓云, 等. 中国血液病患者中性粒细胞缺乏伴发热的多中心、前瞻性流行病学研究[J]. 中华血液学杂志, 2016, 37(3): 177-182. PMID: 27033752. PMCID: PMC7342950. DOI: 10.3760/cma.j.issn.0253-2727.2016.03.001.
16 衣晓丽, 刘晓明, 刘天峰, 等. CCLG-ALL2008方案治疗303例儿童ALL诱导期感染并发症分析[J]. 中国小儿血液与肿瘤杂志, 2017, 22(6): 286-291. DOI: 10.3969/j.issn.1673-5323.2017.06.002.
17 朱国庆, 徐春晖, 林青松, 等. 2014-2018年儿童恶性血液病患者中性粒细胞缺乏期血流感染病原学和临床特征分析[J]. 中华血液学杂志, 2020, 41(8): 655-660. PMID: 32942819. PMCID: PMC7525167. DOI: 10.3760/cma.j.issn.0253-2727.2020.08.007.
18 Chiu CY, Miller SA. Clinical metagenomics[J]. Nat Rev Genet, 2019, 20(6): 341-355. PMID: 30918369. PMCID: PMC6858796. DOI: 10.1038/s41576-019-0113-7.
19 宏基因组分析和诊断技术在急危重症感染应用专家共识组. 宏基因组分析和诊断技术在急危重症感染应用的专家共识[J]. 中华急诊医学杂志, 2019, 28(2): 151-155. DOI: 10.3760/cma.j.issn.1671-0282.2019.02.005.