Association of the ADCY9 gene and gene-environmental interaction with the susceptibility to childhood bronchial asthma

JIA Jing-Jing, WEI Bing, LI Ling-Xue, REN Meng-Yang, ZHANG Shi-Nan, LIU Jun, ZHANG Yu-Xuan

Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (9) : 1027-1035.

PDF(758 KB)
PDF(758 KB)
Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (9) : 1027-1035. DOI: 10.7499/j.issn.1008-8830.2204107
CLINICAL RESEARCH

Association of the ADCY9 gene and gene-environmental interaction with the susceptibility to childhood bronchial asthma

  • JIA Jing-Jing, WEI Bing, LI Ling-Xue, REN Meng-Yang, ZHANG Shi-Nan, LIU Jun, ZHANG Yu-Xuan
Author information +
History +

Abstract

Objective To study the association of the single nucleotide polymorphisms (SNPs) of the adenylyl cyclase IX (ADCY9) gene at rs1967309, rs2230739, rs2601814, rs2601825, rs2601796, and rs2283497 loci and gene-environment interaction with childhood bronchial asthma (asthma for short). Methods A total of 123 children with asthma who attended the hospital from March 2019 to September 2021 were enrolled as the asthma group, among whom 84 (68.3%) had mild-to-moderate attacks and 39 (31.7%) had severe attacks. A total of 124 healthy children were enrolled as the control group. The association of the SNPs and haplotypes of the ADCY9 gene at the above 6 loci with the susceptibility to childhood asthma was evaluated. The method of generalized multifactor dimensionality reduction was used to analyze gene-environment interaction. Results Polymorphisms were observed for the ADCY9 gene at the above six loci in both the asthma and control groups, and there were significant differences in genotype and allele frequencies at the rs1967309 locus between the two groups (P<0.05). There was no significant difference in the distribution frequency of haplotypes TA and GG between the asthma and control groups (P>0.05). The generalized multifactor dimensionality reduction analysis showed interaction between rs1967309 locus and allergen contact (P<0.05), which increased the risk of asthma (OR=1.585, P<0.05). Conclusions The rs1967309 locus of the ADCY9 gene is associated with the susceptibility to childhood asthma, and the locus and allergen contact have a synergistic effect on the development of asthma. Citation:Chinese Journal of Contemporary Pediatrics, 2022, 24(9): 1027-1035

Key words

Asthma / ADCY9 gene / Single nucleotide polymorphism / Interaction / Child

Cite this article

Download Citations
JIA Jing-Jing, WEI Bing, LI Ling-Xue, REN Meng-Yang, ZHANG Shi-Nan, LIU Jun, ZHANG Yu-Xuan. Association of the ADCY9 gene and gene-environmental interaction with the susceptibility to childhood bronchial asthma[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(9): 1027-1035 https://doi.org/10.7499/j.issn.1008-8830.2204107

References

1 中华医学会儿科学分会呼吸学组, 《中华儿科杂志》编辑委员会. 儿童支气管哮喘诊断与防治指南(2016年版)[J]. 中华儿科杂志, 2016, 54(3): 167-181. PMID: 26957061. DOI: 10.3760/cma.j.issn.0578-1310.2016.03.003.
2 全国儿童哮喘防治协作组. 中国城区儿童哮喘患病率调查[J]. 中华儿科杂志, 2003, 41(2): 123-127. PMID: 14759318. DOI: 10.3760/j.issn:0578-1310.2003.02.014.
3 全国儿科哮喘协作组, 中国疾病预防控制中心环境与健康相关产品安全所. 第三次中国城市儿童哮喘流行病学调查[J]. 中华儿科杂志, 2013, 51(10): 729-735. PMID: 24406223. DOI: 10.3760/cma.j.issn.0578-1310.2013.10.003.
4 Lang DM. Severe asthma: epidemiology, burden of illness, and heterogeneity[J]. Allergy Asthma Proc, 2015, 36(6): 418-424. PMID: 26534747. DOI: 10.2500/aap.2015.36.3908.
5 Mirabelli MC, Hsu J, Gower WA. Comorbidities of asthma in U.S. children[J]. Respir Med, 2016, 116: 34-40. PMID: 27296818. PMCID: PMC4910635. DOI: 10.1016/j.rmed.2016.05.008.
6 Lee YS, Marmorstein LY, Marmorstein AD. Soluble adenylyl cyclase in the eye[J]. Biochim Biophys Acta, 2014, 1842(12 Pt B): 2579-2583. PMID: 25108282. PMCID: PMC4262638. DOI: 10.1016/j.bbadis.2014.07.032.
7 Teixeira HM, Alcantara-Neves NM, Barreto M, et al. Adenylyl cyclase type 9 gene polymorphisms are associated with asthma and allergy in Brazilian children[J]. Mol Immunol, 2017, 82: 137-145. PMID: 28076799. DOI: 10.1016/j.molimm.2017.01.001.
8 鲍一笑, 华丽. 哮喘基因研究进展[J]. 中华实用儿科临床杂志, 2013, 28(16): 1201-1203. DOI: 10.3760/cma.j.issn.2095-428X.2013.16.001.
9 杨琰茗, 杨雅清, 宋杲. 腺苷酸环化酶的研究进展[J]. 临床与病理杂志, 2019, 39(2): 390-394. DOI: 10.3978/j.issn.2095-6959.2019.02.026.
10 Tantisira KG, Small KM, Litonjua AA, et al. Molecular properties and pharmacogenetics of a polymorphism of adenylyl cyclase type 9 in asthma: interaction between beta-agonist and corticosteroid pathways[J]. Hum Mol Genet, 2005, 14(12): 1671-1677. PMID: 15879435. DOI: 10.1093/hmg/ddi175.
11 Ortega VE, Meyers DA, Bleecker ER. Asthma pharmacogenetics and the development of genetic profiles for personalized medicine[J]. Pharmgenomics Pers Med, 2015, 8: 9-22. PMID: 25691813. PMCID: PMC4325626. DOI: 10.2147/PGPM.S52846.
12 Kim SH, Ye YM, Lee HY, et al. Combined pharmacogenetic effect of ADCY9 and ADRB2 gene polymorphisms on the bronchodilator response to inhaled combination therapy[J]. J Clin Pharm Ther, 2011, 36(3): 399-405. PMID: 21545619. DOI: 10.1111/j.1365-2710.2010.01196.x.
13 Apinjoh TO, Anchang-Kimbi JK, Njua-Yafi C, et al. Association of candidate gene polymorphisms and TGF-beta/IL-10 levels with malaria in three regions of Cameroon: a case-control study[J]. Malar J, 2014, 13: 236. PMID: 24934404. PMCID: PMC4077225. DOI: 10.1186/1475-2875-13-236.
14 Manjurano A, Clark TG, Nadjm B, et al. Candidate human genetic polymorphisms and severe malaria in a Tanzanian population[J]. PLoS One, 2012, 7(10): e47463. PMID: 23144702. PMCID: PMC3483265. DOI: 10.1371/journal.pone.0047463.
15 Akparova A, Aripova A, Abishev M, et al. An investigation of the association between ADRB2 gene polymorphisms and asthma in Kazakh population[J]. Clin Respir J, 2020, 14(6): 514-520. PMID: 32034992. DOI: 10.1111/crj.13160.
16 Hui TY, Burt A. Estimating linkage disequilibrium from genotypes under Hardy-Weinberg equilibrium[J]. BMC Genet, 2020, 21(1): 21. PMID: 32102657. PMCID: PMC7045472. DOI: 10.1186/s12863-020-0818-9.
17 Snyder MW, Adey A, Kitzman JO, et al. Haplotype-resolved genome sequencing: experimental methods and applications[J]. Nat Rev Genet, 2015, 16(6): 344-358. PMID: 25948246. DOI: 10.1038/nrg3903.
18 Vishweswaraiah S, Ramachandra NB, Jayaraj BS, et al. Haplotype analysis of ADAM33 polymorphisms in asthma: a pilot study[J]. Indian J Med Res, 2019, 150(3): 272-281. PMID: 31719298. PMCID: PMC6886134. DOI: 10.4103/ijmr.IJMR_698_17.
19 Sio YY, Anantharaman R, Lee SQE, et al. The asthma-associated PER1-like domain-containing protein 1 (PERLD1) haplotype influences soluble glycosylphosphatidylinositol anchor protein (sGPI-AP) levels in serum and immune cell proliferation[J]. Sci Rep, 2020, 10(1): 715. PMID: 31959860. PMCID: PMC6970992. DOI: 10.1038/s41598-020-57592-9.
20 陈海霞, 单玉霞, 崔振泽, 等. 儿童哮喘发病机制中基因与环境相互作用新进展[J]. 中国中西医结合儿科学, 2021, 13(1): 5-10. DOI: 10.3969/j.issn.1674-3865.2021.01.002.
21 Mendy A, Wilkerson J, Salo PM, et al. Endotoxin clustering with allergens in house dust and asthma outcomes in a U.S. national study[J]. Environ Health, 2020, 19(1): 35. PMID: 32178682. PMCID: PMC7077112. DOI: 10.1186/s12940-020-00585-y.
22 AlShatti KA, Ziyab AH. Pet-Keeping in relation to asthma, rhinitis, and eczema symptoms among adolescents in Kuwait: a cross-sectional study[J]. Front Pediatr, 2020, 8: 331. PMID: 32656169. PMCID: PMC7324793. DOI: 10.3389/fped.2020.00331.
23 Deng Q, Deng L, Lu C, et al. Parental stress and air pollution increase childhood asthma in China[J]. Environ Res, 2018, 165: 23-31. PMID: 29655040. DOI: 10.1016/j.envres.2018.04.003.
24 Raby BA. Asthma severity, nature or nurture: genetic determinants[J]. Curr Opin Pediatr, 2019, 31(3): 340-348. PMID: 31090575. DOI: 10.1097/MOP.0000000000000758.
PDF(758 KB)

Accesses

Citation

Detail

Sections
Recommended

/