Serum vitamin K2 level and its association with bone metabolism markers in 1 732 children

DU Chang-Xiu, LI Na

Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (10) : 1130-1135.

PDF(574 KB)
PDF(574 KB)
Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (10) : 1130-1135. DOI: 10.7499/j.issn.1008-8830.2205090
CLINICAL RESEARCH

Serum vitamin K2 level and its association with bone metabolism markers in 1 732 children

  • DU Chang-Xiu, LI Na
Author information +
History +

Abstract

Objective To study the level of serum vitamin K2 (VitK2) and its association with bone metabolism markers osteocalcin (OC), type I procollagen amino-terminal peptide (PINP), and type I collagen carboxy-terminal peptide (CTX) in children. Methods A prospective analysis was performed on 1 732 children who underwent routine physical examination from October 2020 to October 2021. The serum levels of VitK2 and 25-hydroxy vitamin D [25(OH)D] were measured. According to age, they were divided into four groups: <1 year, 1-3 years group, >3-6 years group, and >6-14 years. A total of 309 children with 25(OH)D≥50 nmol/L were screened out, and serum levels of OC, PINP, and CTX were measured to investigate the correlation of the serum levels of OC, PINP, and CTX with serum VitK2 levels in different age groups. Results The prevalence rate of serum VitK2 deficiency was 52.31% (906/1 732). The VitK2 deficiency group had higher prevalence rates of overweight/obesity and growth pain (≥3 years of age) than the normal VitK2 group (P<0.05). There were differences in the prevalence rate of serum VitK2 deficiency (P<0.0083) and the serum level of VitK2 (P<0.05) between the 1-3 years group and the >6-14 years group. The <1 year group had a higher serum level of CTX and a lower serum level of PINP than the >3-6 years group and the >6-14 years group (P<0.05). The <1 year group had a lower serum level of OC than the >6-14 years group (P<0.05). Serum VitK2 level was positively correlated with OC level (rs=0.347, P<0.01), and CTX level was negatively correlated with PINP level (rs=-0.317, P<0.01). Conclusions Serum VitK2 deficiency may be associated with overweight/obesity. Serum VitK2 may affect the level of OC and even bone health.

Key words

Vitamin K2 / Osteocalcin / Type I procollagen amino-terminal peptide / Type I collagen carboxy-terminal peptide / Child

Cite this article

Download Citations
DU Chang-Xiu, LI Na. Serum vitamin K2 level and its association with bone metabolism markers in 1 732 children[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(10): 1130-1135 https://doi.org/10.7499/j.issn.1008-8830.2205090

References

1 Zhang Z, Liu L, Liu C, et al. New aspects of microbial vitamin K2 production by expanding the product spectrum[J]. Microb Cell Fact, 2021, 20(1): 84. PMID: 33849534. PMCID: PMC8042841. DOI: 10.1186/s12934-021-01574-7.
2 Sato T, Inaba N, Yamashita T. MK-7 and its effects on bone quality and strength[J]. Nutrients, 2020, 12(4): 965. PMID: 32244313. PMCID: PMC7230802. DOI: 10.3390/nu12040965.
3 Nazifova-Tasinova NF, Atanasov AA, Pasheva MG, et al. Circulating uncarboxylated matrix Gla protein in patients with atrial fibrillation or heart failure with preserved ejection fraction[J]. Arch Physiol Biochem, 2020. Epub ahead of print. PMID: 32620059. DOI: 10.1080/13813455.2020.1786130.
4 Miura M, Satoh Y. Significance of bone turnover marker measurement in the treatment of osteoporosis[J]. Yakugaku Zasshi, 2019, 139(1): 27-33. PMID: 30606924. DOI: 10.1248/yakushi.18-00154-3.
5 van Summeren MJ, Braam LA, Lilien MR, et al. The effect of menaquinone-7 (vitamin K2) supplementation on osteocalcin carboxylation in healthy prepubertal children[J]. Br J Nutr, 2009, 102(8): 1171-1178. PMID: 19450370. DOI: 10.1017/S0007114509382100.
6 Weaver CM, Gordon CM, Janz KF, et al. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations[J]. Osteoporos Int, 2016, 27(4): 1281-1386. PMID: 26856587. PMCID: PMC4791473. DOI: 10.1007/s00198-015-3440-3.
7 陈淑玲, 赵瑾珠, 郝燕. 维生素K与儿童骨健康的研究进展[J]. 中国儿童保健杂志, 2021, 29(7): 742-745. DOI: 10.11852/zgetbjzz2020-1085.
8 胡雪松, 覃佳强, 郭彬, 等. 维生素K治疗儿童废用性骨质疏松的疗效观察[J]. 西部医学, 2018, 30(5): 704-706. DOI: 10.3969/j.issn.1672-3511.2018.05.019.
9 李辉, 季成叶, 宗心南, 等. 中国0~18岁儿童、青少年体块指数的生长曲线[J]. 中华儿科杂志, 2009, 47(7): 493-498. PMID: 19951508. DOI: 10.3760/cma.j.issn.0578-1310.2009.07.004.
10 Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know[J]. J Clin Endocrinol Metab, 2011, 96(1): 53-58. PMID: 21118827. PMCID: PMC3046611. DOI: 10.1210/jc.2010-2704.
11 Mandatori D, Pelusi L, Schiavone V, et al. The dual role of vitamin K2 in "bone-vascular crosstalk": opposite effects on bone loss and vascular calcification[J]. Nutrients, 2021, 13(4): 1222. PMID: 33917175. PMCID: PMC8067793. DOI: 10.3390/nu13041222.
12 Duan F, Mei C, Yang L, et al. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells[J]. Sci Rep, 2020, 10(1): 7714. PMID: 32382009. PMCID: PMC7206016. DOI: 10.1038/s41598-020-64880-x.
13 Sogabe N, Maruyama R, Baba O, et al. Effects of long-term vitamin K1 (phylloquinone) or vitamin K2 (menaquinone-4) supplementation on body composition and serum parameters in rats[J]. Bone, 2011, 48(5): 1036-1042. PMID: 21295170. DOI: 10.1016/j.bone.2011.01.020.
14 Klapkova E, Cepova J, Dunovska K, et al. Determination of vitamins K1, MK-4, and MK-7 in human serum of postmenopausal women by HPLC with fluorescence detection[J]. J Clin Lab Anal, 2018, 32(5): e22381. PMID: 29333616. PMCID: PMC6816853. DOI: 10.1002/jcla.22381.
15 周鹏丽, 陈杰鹏, 段丽丽, 等. 维生素K2的临床检测方法及其评价指标[J]. 中国微生态学杂志, 2021, 33(3): 365-368. DOI: 10.13381/j.cnki.cjm.202103024.
16 Caluwé R, Verbeke F, De Vriese AS. Evaluation of vitamin K status and rationale for vitamin K supplementation in dialysis patients[J]. Nephrol Dial Transplant, 2020, 35(1): 23-33. PMID: 30590803. DOI: 10.1093/ndt/gfy373.
17 Zhang Y, Bala V, Mao Z, et al. A concise review of quantification methods for determination of vitamin K in various biological matrices[J]. J Pharm Biomed Anal, 2019, 169: 133-141. PMID: 30861405. PMCID: PMC6496949. DOI: 10.1016/j.jpba.2019.03.006.
18 Marles RJ, Roe AL, Oketch-Rabah HA. US Pharmacopeial Convention safety evaluation of menaquinone-7, a form of vitamin K[J]. Nutr Rev, 2017, 75(7): 553-578. PMID: 28838081. DOI: 10.1093/nutrit/nux022.
19 Ozdemir MA, Yilmaz K, Abdulrezzak U, et al. The efficacy of vitamin K2 and calcitriol combination on thalassemic osteopathy[J]. J Pediatr Hematol Oncol, 2013, 35(8): 623-627. PMID: 24136015. DOI: 10.1097/MPH.0000000000000040.
20 周建烈, 徐峰, 吴斯婷, 等. 《美国药典委员会对MK-7(维生素K2)安全性评价》的解读[J]. 沈阳药科大学学报, 2019, 36(4): 361-368. DOI: 10.14066/j.cnki.cn21-1349/r.2019.04.014.
21 洪维, 朱汉民, 程群, 等. 血清维生素D水平与骨代谢状态的相关性: 附1389例观察[J]. 中华骨质疏松和骨矿盐疾病杂志, 2011, 4(4): 224-231. DOI: 10.3969/j.issn.1674-2591.2011.04.002.
22 Thiering E, Brüske I, Kratzsch J, et al. Associations between serum 25-hydroxyvitamin D and bone turnover markers in a population based sample of German children[J]. Sci Rep, 2015, 5: 18138. PMID: 26667774. PMCID: PMC4678865. DOI: 10.1038/srep18138.
23 金轶. 不同年龄段小儿骨骼维生素K营养状况的评价与分析[J]. 中国全科医学, 2013, 16(24): 2880-2882. DOI: 10.3969/j.issn.1007-9572.2013.08.107.
24 康丽娟, 李宝强, 徐传伟. 维生素K对营养性维生素D缺乏性佝偻病患儿骨钙素羧化率的影响[J]. 儿科药学杂志, 2018, 24(10): 19-21. DOI: 10.13407/j.cnki.jpp.1672-108X.2018.10.006.
25 Nicolaidou P, Stavrinadis I, Loukou I, et al. The effect of vitamin K supplementation on biochemical markers of bone formation in children and adolescents with cystic fibrosis[J]. Eur J Pediatr, 2006, 165(8): 540-545. PMID: 16622660. DOI: 10.1007/s00431-006-0132-1.
PDF(574 KB)

Accesses

Citation

Detail

Sections
Recommended

/