Blood metabolites in preterm infants with retinopathy of prematurity based on tandem mass spectrometry: a preliminary study

YANG Qiu-Ping, LI Si-Tao, HAO Hu, GU Xia, SHI Cong-Cong, XIAO Xin, CAI Yao

Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (2) : 140-146.

PDF(808 KB)
PDF(808 KB)
Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (2) : 140-146. DOI: 10.7499/j.issn.1008-8830.2209142
CLINICAL RESEARCH

Blood metabolites in preterm infants with retinopathy of prematurity based on tandem mass spectrometry: a preliminary study

  • YANG Qiu-Ping, LI Si-Tao, HAO Hu, GU Xia, SHI Cong-Cong, XIAO Xin, CAI Yao
Author information +
History +

Abstract

Objective To study new biomarkers for the early diagnosis of retinopathy of prematurity (ROP) by analyzing the differences in blood metabolites based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and metabolomics. Methods Dried blood spots were collected from 21 infants with ROP (ROP group) and 21 infants without ROP (non-ROP group) who were hospitalized in the Sixth Affiliated Hospital of Sun Yat-sen University from January 2013 to December 2016. LC-MS/MS was used to measure the metabolites, and orthogonal partial least squares-discriminant analysis was used to search for differentially expressed metabolites and biomarkers. Results There was a significant difference in blood metabolic profiles between the ROP and non-ROP groups. The pattern recognition analysis, Score-plot, and weight analysis obtained 10 amino acids with a relatively large difference. Further statistical analysis showed that the ROP group had significant increases in blood levels of glutamic acid, leucine, aspartic acid, ornithine, and glycine compared with the non-ROP group (P<0.05). The receiver operating characteristic curve analysis showed that glutamic acid and ornithine had the highest value in diagnosing ROP. Conclusions Blood metabolites in preterm infants with ROP are different from those without ROP. Glutamic acid and ornithine are the metabolic markers for diagnosing ROP. LC-MS/MS combined with metabolomics analysis has a potential application value in the early identification and diagnosis of ROP.

Key words

Retinopathy of prematurity / Metabolomics / Tandem mass spectrometry / Liquid chromatography / Biomarker / Preterm infant

Cite this article

Download Citations
YANG Qiu-Ping, LI Si-Tao, HAO Hu, GU Xia, SHI Cong-Cong, XIAO Xin, CAI Yao. Blood metabolites in preterm infants with retinopathy of prematurity based on tandem mass spectrometry: a preliminary study[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(2): 140-146 https://doi.org/10.7499/j.issn.1008-8830.2209142

References

1 中华医学会儿科学分会眼科学组. 早产儿视网膜病变治疗规范专家共识[J]. 中华眼底病杂志, 2022, 38(1): 10-13. DOI: 10.3760/cma.j.cn511434-20211119-00647.
2 李思涛, 黄小玲, 吴时光, 等. 极低出生体重早产儿尿代谢组学研究[J]. 中华儿科杂志, 2017, 55(6): 434-438. PMID: 28592011. DOI: 10.3760/cma.j.issn.0578-1310.2017.06.008.
3 Nivison-Smith L, Chua J, Tan SS, et al. Amino acid signatures in the developing mouse retina[J]. Int J Dev Neurosci, 2014, 33: 62-80. PMID: 24368173. DOI: 10.1016/j.ijdevneu.2013.12.005.
4 Cantelmo AR, Conradi LC, Brajic A, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy[J]. Cancer Cell, 2016, 30(6): 968-985. PMID: 27866851. PMCID: PMC5675554. DOI: 10.1016/j.ccell.2016.10.006.
5 蔡威, 汤庆娅, 王莹, 等. 中国新生儿营养支持临床应用指南[J]. 临床儿科杂志, 2013, 31(12): 1177-1182. DOI: 10.3969/j.issn.1000-3606.2013.12.020.
6 张德双, 王华, 陈娟. 早产儿视网膜病变的最新研究进展[J]. 中华妇幼临床医学杂志(电子版), 2012, 8(6): 783-786. DOI: 10.3877/cma.j.issn.1673-5250.2012.06.030.
7 Teoh ST, Leimanis-Laurens ML, Comstock SS, et al. Combined plasma and urinary metabolomics uncover metabolic perturbations associated with severe respiratory syncytial viral infection and future development of asthma in infant patients[J]. Metabolites, 2022, 12(2): 178. PMID: 35208252. PMCID: PMC8875115. DOI: 10.3390/metabo12020178.
8 Pieragostino D, Cicalini I, Di Michele S, et al. A case of suspected hyperphenylalaninemia at newborn screening by tandem mass spectrometry during total parenteral nutrition[J]. Metabolites, 2020, 10(2): 44. PMID: 31991569. PMCID: PMC7074497. DOI: 10.3390/metabo10020044.
9 Cicalini I, Tumini S, Guidone PI, et al. Serum steroid pro?ling by liquid chromatography-tandem mass spectrometry for the rapid confirmation and early treatment of congenital adrenal hyperplasia: a neonatal case report[J]. Metabolites, 2019, 9(12): 284. PMID: 31766536. PMCID: PMC6950672. DOI: 10.3390/metabo9120284.
10 李思涛, 郝虎, 刘梦娴, 等. 基于液相色谱-串联质谱联用技术的支气管肺发育不良患儿血代谢产物分析[J]. 中华围产医学杂志, 2019, 22(3): 173-179. DOI: 10.3760/cma.j.issn.1007-9408.2019.03.005.
11 Fu Z, Nilsson AK, Hellstrom A, et al. Retinopathy of prematurity: metabolic risk factors[J]. Elife, 2022, 11: e80550. PMID: 36420952. PMCID: PMC9691009. DOI: 10.7554/eLife.80550.
12 Zhou Y, Xu Y, Zhang X, et al. Plasma metabolites in treatment-requiring retinopathy of prematurity: potential biomarkers identified by metabolomics[J]. Exp Eye Res, 2020, 199: 108198. PMID: 32828955. DOI: 10.1016/j.exer.2020.108198.
13 Nilsson AK, Andersson MX, Sj?bom U, et al. Sphingolipidomics of serum in extremely preterm infants: association between low sphingosine-1-phosphate levels and severe retinopathy of prematurity[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(7): 158939. PMID: 33862236. PMCID: PMC8633973. DOI: 10.1016/j.bbalip.2021.158939.
14 Fu Z, L?fqvist CA, Liegl R, et al. Photoreceptor glucose metabolism determines normal retinal vascular growth[J]. EMBO Mol Med, 2018, 10(1): 76-90. PMID: 29180355. PMCID: PMC5760850. DOI: 10.15252/emmm.201707966.
15 Cakir B, Hellstr?m W, Tomita Y, et al. IGF1, serum glucose, and retinopathy of prematurity in extremely preterm infants[J]. JCI insight, 2020, 5(19): e140363. PMID: 33004691. PMCID: PMC7566718. DOI: 10.1172/jci.insight.140363.
16 Chi-Casta?eda D, Ortega A. Circadian regulation of glutamate transporters[J]. Front Endocrinol (Lausanne), 2018, 9: 340. PMID: 29977228 PMCID: PMC6021491 DOI: 10.3389/fendo.2018.00340.
17 杨曼, 谭薇. Müller细胞在糖尿病视网膜病变中的研究进展[J]. 国际眼科杂志, 2019, 19(11): 1874-1876. DOI: 10.3980/j.issn.1672-5123.2019.11.13.
18 雷祥, 栗占荣, 刘艳萍. 早产儿视网膜病变患儿血清谷氨酸水平变化的意义及其对预后的影响[J]. 中华实用儿科临床杂志, 2020, 35(1): 50-53. DOI: 10.3760/cma.j.issn.2095-428X.2020.01.013.
19 李志萍, 吴焕卿, 陈惠军. 早产儿视网膜病变患儿血清谷氨酸浓度变化及其相关关系[J]. 眼科新进展, 2014, 34(8): 782-784. DOI: 10.13389/j.cnki.rao.2014.0216.
20 Rhee SY, Jung ES, Park HM, et al. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy[J]. Metabolomics, 2018, 14(7): 89. PMID: 29950956. PMCID: PMC6013531. DOI: 10.1007/s11306-018-1383-3.
21 Ozcan Y, Huseyin G, Sonmez K. Evaluation of plasma amino acid levels in preterm infants and their potential correlation with retinopathy of prematurity[J]. J Ophthalmol, 2020, 2020: 8026547. PMID: 33489343. PMCID: PMC7801939. DOI: 10.1155/2020/8026547.
22 于菁, 王秋月. 富亮氨酸α-2糖蛋白-1与糖尿病血管并发症[J]. 国际内分泌代谢杂志, 2019, 39(6): 387-390. DOI: 10.3760/cma.j.issn.1673-4157.2019.06.006.
23 Mundo L, Tosi GM, Lazzi S, et al. LRG1 expression is elevated in the eyes of patients with neovascular age-related macular degeneration[J]. Int J Mol Sci, 2021, 22(16): 8879. PMID: 34445590. PMCID: PMC8396268. DOI: 10.3390/ijms22168879.
24 Low SWY, Connor TB, Kassem IS, et al. Small leucine-rich proteoglycans (SLRPs) in the retina[J]. Int J Mol Sci, 2021, 22(14): 7293. PMID: 34298915. PMCID: PMC8305803. DOI: 10.3390/ijms22147293.
25 Mikulski T, Dabrowski J, Hilgier W, et al. Effects of supplementation with branched chain amino acids and ornithine aspartate on plasma ammonia and central fatigue during exercise in healthy men[J]. Folia Neuropathol, 2015, 53(4): 377-386. PMID: 26785372. DOI: 10.5114/fn.2015.56552.
26 Hayasaka S, Kodama T, Ohira A. Retinal risks of high-dose ornithine supplements: a review[J]. Br J Nutr, 2011, 106(6): 801-811. PMID: 21767450. DOI: 10.1017/S0007114511003291.
27 Park SY, Kim J, Son JI, et al. Dietary glutamic acid and aspartic acid as biomarkers for predicting diabetic retinopathy[J]. Sci Rep, 2021, 11(1): 7244. PMID: 33790305. PMCID: PMC8012375. DOI: 10.1038/s41598-021-83165-5.
28 Guo D, Murdoch CE, Xu H, et al. Vascular endothelial growth factor signaling requires glycine to promote angiogenesis[J]. Sci Rep, 2017, 7(1): 14749. PMID: 29116138. PMCID: PMC5677092. DOI: 10.1038/s41598-017-15246-3.
29 Amelio I, Cutruzzolá F, Antonov A, et al. Serine and glycine metabolism in cancer[J]. Trends Biochem Sci, 2014, 39(4): 191-198. PMID: 24657017. PMCID: PMC3989988. DOI: 10.1016/j.tibs.2014.02.004.
30 Vandekeere S, Dubois C, Kalucka J, et al. Serine synthesis via PHGDH is essential for heme production in endothelial cells[J]. Cell Metab, 2018, 28(4): 573-587.e13. PMID: 30017355. DOI: 10.1016/j.cmet.2018.06.009.
31 Yang Y, Wu Z, Li S, et al. Targeted blood metabolomic study on retinopathy of prematurity[J]. Invest Ophthalmol Vis Sci, 2020, 61(2): 12. PMID: 32049343. PMCID: PMC7326483. DOI: 10.1167/iovs.61.2.12.
PDF(808 KB)

Accesses

Citation

Detail

Sections
Recommended

/