Changes and significance of type 2 innate lymphoid cells and their related factors in bronchopulmonary dysplasia

WANG Qian-Wen, ZHU Yue, WANG Qiu-Xia, LU Hong-Yan

Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (2) : 179-185.

PDF(710 KB)
PDF(710 KB)
Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (2) : 179-185. DOI: 10.7499/j.issn.1008-8830.2210005
CLINICAL RESEARCH

Changes and significance of type 2 innate lymphoid cells and their related factors in bronchopulmonary dysplasia

  • WANG Qian-Wen, ZHU Yue, WANG Qiu-Xia, LU Hong-Yan
Author information +
History +

Abstract

Objective To investigate the changes and significance of type 2 innate lymphoid cells (ILC2), interleukin-33 (IL-33), interleukin-25 (IL-25), thymic stromal lymphopoietin (TSLP), interleukin-5 (IL-5), and interleukin-13 (IL-13) in peripheral blood of preterm infants with bronchopulmonary dysplasia (BPD). Methods A total of 76 preterm infants with a gestational age of <32 weeks and a length of hospital stay of ≥14 days who were admitted to the Department of Pediatrics of the Affiliated Hospital of Jiangsu University from September 2020 to December 2021 were enrolled. According to the diagnostic criteria for BPD, they were divided into a BPD group with 30 infants and a non-BPD group with 46 infants. The two groups were compared in terms of the percentage of ILC2 and the levels of IL-33, IL-25, TSLP, IL-5, and IL-13 in peripheral blood on days 1, 7, and 14 after birth. Results The BPD group had significantly lower birth weight and gestational age than the non-BPD group (P<0.05). On days 7 and 14 after birth, the BPD group had significantly higher levels of ILC2, IL-33, TSLP, and IL-5 than the non-BPD group (P<0.05), and these indices had an area under the curve of >0.7 in predicting the devolpment of BPD (P<0.05). Multivariate logistic regression analysis showed that after adjusting for gestational age and birth weight, peripheral blood IL-33, TSLP and IL-5 on days 7 and 14 after birth were closely related to the devolpment of BPD (P<0.05). Conclusions Early innate immune activation and upregulated expression of related factors may be observed in preterm infants with BPD. ILC2, IL-33, TSLP, and IL-5 may be used as biological indicators for early diagnosis of BPD.

Key words

Bronchopulmonary dysplasia / Type 2 innate lymphoid cell / Cytokine / Preterm infant

Cite this article

Download Citations
WANG Qian-Wen, ZHU Yue, WANG Qiu-Xia, LU Hong-Yan. Changes and significance of type 2 innate lymphoid cells and their related factors in bronchopulmonary dysplasia[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(2): 179-185 https://doi.org/10.7499/j.issn.1008-8830.2210005

References

1 张茹, 徐发林, 李文丽, 等. 早产儿支气管肺发育不良早期风险预测模型的构建[J]. 中国当代儿科杂志, 2021, 23(10): 994-1001. PMID: 34719413. PMCID: PMC8549639. DOI: 10.7499/j.issn.1008-8830.2107035.
2 Lapcharoensap W, Gage SC, Kan P, et al. Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort[J]. JAMA Pediatr, 2015, 169(2): e143676. PMID: 25642906. DOI: 10.1001/jamapediatrics.2014.3676.
3 Jensen EA, Dysart K, Gantz MG, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. An evidence-based approach[J]. Am J Respir Crit Care Med, 2019, 200(6): 751-759. PMID: 30995069. PMCID: PMC6775872. DOI: 10.1164/rccm.201812-2348OC.
4 Saluzzo S, Gorki AD, Rana BMJ, et al. First-breath-induced type 2 pathways shape the lung immune environment[J]. Cell Rep, 2017, 18(8): 1893-1905. PMID: 28228256. PMCID: PMC5329122. DOI: 10.1016/j.celrep.2017.01.071.
5 Loering S, Cameron GJM, Starkey MR, et al. Lung development and emerging roles for type 2 immunity[J]. J Pathol, 2019, 247(5): 686-696. PMID: 30506724. DOI: 10.1002/path.5211.
6 Schneider C, Lee J, Koga S, et al. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming[J]. Immunity, 2019, 50(6): 1425-1438.e5. PMID: 31128962. PMCID: PMC6645687. DOI: 10.1016/j.immuni.2019.04.019.
7 Martinez-Gonzalez I, Math? L, Steer CA, et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation[J]. Immunity, 2016, 45(1): 198-208. PMID: 27421705. DOI: 10.1016/j.immuni.2016.06.017.
8 Bartemes KR, Iijima K, Kobayashi T, et al. IL-33-responsive lineage-CD25+CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs[J]. J Immunol, 2012, 188(3): 1503-1513. PMID: 22198948. PMCID: PMC3262877. DOI: 10.4049/jimmunol.1102832.
9 Cakir U, Tayman C, Yucel C. A novel diagnostic marker for the severity of bronchopulmonary dysplasia in very low birth weight infants: interleukin-33[J]. Pediatr Allergy Immunol Pulmonol, 2019, 32(1): 12-17. PMID: 31508250. PMCID: PMC6733051. DOI: 10.1089/ped.2019.0994.
10 Petersen BC, Lukacs NW. IL-17A and IL-25: therapeutic targets for allergic and exacerbated asthmatic disease[J]. Future Med Chem, 2012, 4(7): 833-836. PMID: 22571608. DOI: 10.4155/fmc.12.39.
11 Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP[J]. Nat Immunol, 2002, 3(7): 673-680. PMID: 12055625. DOI: 10.1038/ni805.
12 Mi L, Zhu S, Cai J, et al. Tissue-resident type 2 innate lymphoid cells arrest alveolarization in bronchopulmonary dysplasia[J]. J Immunol Res, 2020, 2020: 8050186. PMID: 33178840. PMCID: PMC7648679. DOI: 10.1155/2020/8050186.
13 陈俊龙, 张春丽. 支气管肺发育不良患儿血清白细胞介素33的水平变化及临床意义[J]. 中国当代儿科杂志, 2020, 22(7): 716-720. PMID: 32669167. PMCID: PMC7389611. DOI: 10.7499/j.issn.1008-8830.2001063.
14 Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop[J]. J Pediatr, 2018, 197: 300-308. PMID: 29551318. PMCID: PMC5970962. DOI: 10.1016/j.jpeds.2018.01.043.
15 Ghaedi M, Shen ZY, Orangi M, et al. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets[J]. J Exp Med, 2020, 217(3): 20182293. PMID: 31816636. PMCID: PMC7062532. DOI: 10.1084/jem.20182293.
16 王家良. 临床流行病学——临床科研设计、测量与评价[M]. 3版. 上海: 上海科学技术出版社, 2009: 156-178.
17 Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on[J]. Cell, 2018, 174(5): 1054-1066. PMID: 30142344. DOI: 10.1016/j.cell.2018.07.017.
18 Mj?sberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161[J]. Nat Immunol, 2011, 12(11): 1055-1062. PMID: 21909091. DOI: 10.1038/ni.2104.
19 徐儒政, 姜旭, 孙斌. 胎龄<32周早产儿支气管肺发育不良临床特点[J]. 临床儿科杂志, 2022, 40(6): 420-424. DOI: 10.12372/jcp.2022.21e0945.
20 Kabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms[J]. Immunol Rev, 2018, 286(1): 37-52. PMID: 30294963. DOI: 10.1111/imr.12706.
21 Cai T, Qiu J, Ji Y, et al. IL-17-producing ST2+ group 2 innate lymphoid cells play a pathogenic role in lung inflammation[J]. J Allergy Clin Immunol, 2019, 143(1): 229-244.e9. PMID: 29625134. PMCID: PMC6170730. DOI: 10.1016/j.jaci.2018.03.007.
22 Christianson CA, Goplen NP, Zafar I, et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33[J]. J Allergy Clin Immunol, 2015, 136(1): 59-68.e14. PMID: 25617223. PMCID: PMC4494983. DOI: 10.1016/j.jaci.2014.11.037.
23 Cheon IS, Son YM, Jiang L, et al. Neonatal hyperoxia promotes asthma-like features through IL-33-dependent ILC2 responses[J]. J Allergy Clin Immunol, 2018, 142(4): 1100-1112. PMID: 29253513. PMCID: PMC6003836. DOI: 10.1016/j.jaci.2017.11.025.
24 Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease[J]. Immunol Rev, 2017, 278(1): 173-184. PMID: 28658560. PMCID: PMC5492954. DOI: 10.1111/imr.12552.
25 Tang X. Interleukin-33 (IL-33) increases hyperoxia-induced bronchopulmonary dysplasia in newborn mice by regulation of inflammatory mediators[J]. Med Sci Monit, 2018, 24: 6717-6728. PMID: 30244258. PMCID: PMC6266634. DOI: 10.12659/MSM.910851.
26 Ying S, O'Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease[J]. J Immunol, 2008, 181(4): 2790-2798. PMID: 18684970. DOI: 10.4049/jimmunol.181.4.2790.
27 Zhou B, Comeau MR, De Smedt T, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice[J]. Nat Immunol, 2005, 6(10): 1047-1053. PMID: 16142237. DOI: 10.1038/ni1247.
28 Al-Shami A, Spolski R, Kelly J, et al. A role for TSLP in the development of inflammation in an asthma model[J]. J Exp Med, 2005, 202(6): 829-839. PMID: 16172260. PMCID: PMC2212950. DOI: 10.1084/jem.20050199.
29 Takatsu K. Interleukin-5 and IL-5 receptor in health and diseases[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2011, 87(8): 463-485. PMID: 21986312. PMCID: PMC3313690. DOI: 10.2183/pjab.87.463.
30 Lao JC, Bui CB, Pang MA, et al. Type 2 immune polarization is associated with cardiopulmonary disease in preterm infants[J]. Sci Transl Med, 2022, 14(639): eaaz8454. PMID: 35385341. DOI: 10.1126/scitranslmed.aaz8454.
PDF(710 KB)

Accesses

Citation

Detail

Sections
Recommended

/