Relationship between skeletal muscle mass index and metabolic phenotypes of obesity in adolescents

TONG Ling-Ling, MA Xiao-Yan, TIAN Mei, DING Wen-Qing

Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (5) : 457-462.

PDF(521 KB)
PDF(521 KB)
Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (5) : 457-462. DOI: 10.7499/j.issn.1008-8830.2211005
CLINICAL RESEARCH

Relationship between skeletal muscle mass index and metabolic phenotypes of obesity in adolescents

  • TONG Ling-Ling1,2, MA Xiao-Yan1,2, TIAN Mei1,2, DING Wen-Qing1,2
Author information +
History +

Abstract

Objective To study the relationship between skeletal muscle mass index (SMI) and metabolic phenotypes of obesity in adolescents, and to provide a basis for the prevention and control of adolescent obesity and related metabolic diseases. Methods A total of 1 352 adolescents aged 12 to 18 years were randomly selected by stratified cluster sampling in Yinchuan City from October 2017 to September 2020, and they were surveyed using questionnaires, physical measurements, body composition measurements, and laboratory tests. According to the diagnostic criteria for metabolic abnormalities and the definition of obesity based on the body mass index, the subjects were divided into four metabolic phenotypes: metabolically healthy normal weight, metabolically healthy obesity, metabolically unhealthy normal weight, and metabolically unhealthy obesity. The association between SMI and the metabolic phenotypes was analyzed using multivariate logistic regression. Results The SMI level in the metabolically unhealthy normal weight, metabolically healthy obesity, and metabolically unhealthy obesity groups was lower than that in the metabolically healthy normal weight group (P<0.001). Multivariate logistic regression analysis showed that after adjusting for gender and age, a higher SMI level was a protective factors for adolescents to develop metabolic unhealthy normal weight, metabolically healthy obesity, and metabolically unhealthy obesity phenotypes (OR=0.74, 0.60, and 0.54, respectively; P<0.001). Conclusions Increasing SMI can reduce the risk of the development of metabolic unhealthy/obesity.

Key words

Obesity / Metabolic phenotype / Skeletal mass index / Adolescent

Cite this article

Download Citations
TONG Ling-Ling, MA Xiao-Yan, TIAN Mei, DING Wen-Qing. Relationship between skeletal muscle mass index and metabolic phenotypes of obesity in adolescents[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(5): 457-462 https://doi.org/10.7499/j.issn.1008-8830.2211005

References

1 张驰, 张明. 社会相关问题对我国儿童青少年肥胖发生率的影响[J]. 青少年体育, 2021(9): 33-34. DOI: 10.3969/j.issn.2095-4581.2021.09.005.
2 王玉梅. 中小学生肥胖流行现状及知信行综合干预效果评价研究[D]. 沈阳: 中国医科大学, 2021.
3 张慧, 赵海萍, 黄子睿, 等. 宁夏汉族中小学生2000—2019年超重与肥胖变化趋势[J]. 中国学校卫生, 2021, 42(11): 1712-1716. DOI: 10.16835/j.cnki.1000-9817.2021.11.025.
4 袁金娜, 金冰涵, 斯淑婷, 等. 2009至2019年6~15岁中国儿童超重和肥胖趋势分析[J]. 中华儿科杂志, 2021, 59(11): 935-941. PMID: 34711028. DOI: 10.3760/cma.j.cn112140-20210523-00441.
5 Smith GI, Mittendorfer B, Klein S. Metabolically healthy obesity: facts and fantasies[J]. J Clin Invest, 2019, 129(10): 3978-3989. PMID: 31524630. PMCID: PMC6763224. DOI: 10.1172/JCI129186.
6 Lin H, Zhang L, Zheng R, et al. The prevalence, metabolic risk and effects of lifestyle intervention for metabolically healthy obesity: a systematic review and meta-analysis: a PRISMA-compliant article[J]. Medicine (Baltimore), 2017, 96(47): e8838. PMID: 29381992. PMCID: PMC5708991. DOI: 10.1097/MD.0000000000008838.
7 Stefan N, H?ring HU, Schulze MB. Metabolically healthy obesity: the low-hanging fruit in obesity treatment?[J]. Lancet Diabetes Endocrinol, 2018, 6(3): 249-258. PMID: 28919065. DOI: 10.1016/S2213-8587(17)30292-9.
8 Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies[J]. Obes Rev, 2014, 15(6): 504-515. PMID: 24661566. PMCID: PMC4309497. DOI: 10.1111/obr.12157.
9 Rhee EJ, Lee MK, Kim JD, et al. Metabolic health is a more important determinant for diabetes development than simple obesity: a 4-year retrospective longitudinal study[J]. PLoS One, 2014, 9(5): e98369. PMID: 24870949. PMCID: PMC4037196. DOI: 10.1371/journal.pone.0098369.
10 Ding WQ, Yan YK, Zhang MX, et al. Hypertension outcomes in metabolically unhealthy normal-weight and metabolically healthy obese children and adolescents[J]. J Hum Hypertens, 2015, 29(9): 548-554. PMID: 25652533. DOI: 10.1038/jhh.2014.124.
11 Gon?alves CG, Glade MJ, Meguid MM. Metabolically healthy obese individuals: key protective factors[J]. Nutrition, 2016, 32(1): 14-20. PMID: 26440861. DOI: 10.1016/j.nut.2015.07.010.
12 Stefan N, H?ring HU, Hu FB, et al. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications[J]. Lancet Diabetes Endocrinol, 2013, 1(2): 152-162. PMID: 24622321. DOI: 10.1016/S2213-8587(13)70062-7.
13 Kim TN, Park MS, Yang SJ, et al. Body size phenotypes and low muscle mass: the Korean sarcopenic obesity study (KSOS)[J]. J Clin Endocrinol Metab, 2013, 98(2): 811-817. PMID: 23293328. DOI: 10.1210/jc.2012-3292.
14 Hwang YC, Cho IJ, Jeong IK, et al. Differential association between sarcopenia and metabolic phenotype in Korean young and older adults with and without obesity[J]. Obesity (Silver Spring), 2017, 25(1): 244-251. PMID: 27874274. DOI: 10.1002/oby.21694.
15 Zhang H, Lin S, Gao T, et al. Association between sarcopenia and metabolic syndrome in middle-aged and older non-obese adults: a systematic review and meta-analysis[J]. Nutrients, 2018, 10(3): 364. PMID: 29547573. PMCID: PMC5872782. DOI: 10.3390/nu10030364.
16 Lee MJ, Kim EH, Bae SJ, et al. Protective role of skeletal muscle mass against progression from metabolically healthy to unhealthy phenotype[J]. Clin Endocrinol (Oxf), 2019, 90(1): 102-113. PMID: 30290006. DOI: 10.1111/cen.13874.
17 Poggiogalle E, Lubrano C, Gnessi L, et al. The decline in muscle strength and muscle quality in relation to metabolic derangements in adult women with obesity[J]. Clin Nutr, 2019, 38(5): 2430-2435. PMID: 30792144. DOI: 10.1016/j.clnu.2019.01.028.
18 National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents[J]. Pediatrics, 2004, 114(2 Suppl 4th Report): 555-576. PMID: 15286277.
19 李辉, 宗心南, 季成叶, 等. 中国2~18岁儿童青少年超重和肥胖筛查体重指数界值点的研究[J]. 中华流行病学杂志, 2010, 31(6): 616-620. PMID: 21163089. DOI: 10.3760/cma.j.issn.0254-6450.2010.06.004.
20 中华医学会儿科学分会内分泌遗传代谢学组, 中华医学会儿科学分会心血管学组, 中华医学会儿科学分会儿童保健学组, 等. 中国儿童青少年代谢综合征定义和防治建议[J]. 中华儿科杂志, 2012, 50(6): 420-422. DOI: 10.3760/cma.j.issn.0578-1310.2012.06.005.
21 Kim HK, Lee MJ, Kim EH, et al. Comparison of muscle mass and quality between metabolically healthy and unhealthy phenotypes[J]. Obesity (Silver Spring), 2021, 29(8): 1375-1386. PMID: 34235892. DOI: 10.1002/oby.23190.
22 Carvalho CJ, Longo GZ, Kakehasi AM, et al. Skeletal mass indices are inversely associated with metabolically unhealthy phenotype in overweight/obese and normal-weight men: a population-based cross-sectional study[J]. Br J Nutr, 2021, 126(4): 501-509. PMID: 33143771. DOI: 10.1017/S0007114520004262.
23 Zisman A, Peroni OD, Abel ED, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance[J]. Nat Med, 2000, 6(8): 924-928. PMID: 10932232. DOI: 10.1038/78693.
24 Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice[J]. J Clin Invest, 2008, 118(3): 829-838. PMID: 18317565. PMCID: PMC2254980. DOI: 10.1172/JCI34275.
25 Roumans KHM, Lindeboom L, Veeraiah P, et al. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance[J]. Nat Commun, 2020, 11(1): 1891. PMID: 32312974. PMCID: PMC7170906. DOI: 10.1038/s41467-020-15684-0.
26 Lambernd S, Taube A, Schober A, et al. Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways[J]. Diabetologia, 2012, 55(4): 1128-1139. PMID: 22282161. DOI: 10.1007/s00125-012-2454-z.
27 Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ[J]. Curr Opin Pharmacol, 2017, 34: 49-55. PMID: 28605657. PMCID: PMC5808999. DOI: 10.1016/j.coph.2017.05.005.
28 Tuttle CSL, Thang LAN , Maier AB. Markers of inflammation and their association with muscle strength and mass: a systematic review and meta-analysis[J]. Ageing Res Rev, 2020, 64: 101185. PMID: 32992047. DOI: 10.1016/j.arr.2020.101185.
29 Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction[J]. FASEB J, 2005, 19(6): 668-670. PMID: 15665035. DOI: 10.1096/fj.04-2870fje.
30 Silva AM, Shen W, Heo M, et al. Ethnicity-related skeletal muscle differences across the lifespan[J]. Am J Hum Biol, 2010, 22(1): 76-82. PMID: 19533617. PMCID: PMC2795070. DOI: 10.1002/ajhb.20956.
PDF(521 KB)

Accesses

Citation

Detail

Sections
Recommended

/