Protective effect of melatonin against oxygen-induced retinopathy: a study based on the HMGB1/NF-κB/NLRP3 axis

CHU Fang-Fang, ZHAO Yan-Song, ZHAO Yu-Ze, BAI Chen, XIAO Pei-Lun, WANG Xiao-Li, YU Shu-Na, JIANG Ji-Ying

Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (6) : 645-652.

PDF(1976 KB)
PDF(1976 KB)
Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (6) : 645-652. DOI: 10.7499/j.issn.1008-8830.2301036
EXPERIMENTAL RESEARCH

Protective effect of melatonin against oxygen-induced retinopathy: a study based on the HMGB1/NF-κB/NLRP3 axis

  • CHU Fang-Fang, ZHAO Yan-Song, ZHAO Yu-Ze, BAI Chen, XIAO Pei-Lun, WANG Xiao-Li, YU Shu-Na, JIANG Ji-Ying
Author information +
History +

Abstract

Objective To study the protective effect of melatonin (Mel) against oxygen-induced retinopathy (OIR) in neonatal mice and the role of the HMGB1/NF-κB/NLRP3 axis. Methods Neonatal C57BL/6J mice, aged 7 days, were randomly divided into a control group, a model group (OIR group), and a Mel treatment group (OIR+Mel group), with 9 mice in each group. The hyperoxia induction method was used to establish a model of OIR. Hematoxylin and eosin staining and retinal flat-mount preparation were used to observe retinal structure and neovascularization. Immunofluorescent staining was used to measure the expression of proteins and inflammatory factors associated with the HMGB1/NF-κB/NLRP3 axis and lymphocyte antigen 6G. Colorimetry was used to measure the activity of myeloperoxidase. Results The OIR group had destruction of retinal structure with a large perfusion-free area and neovascularization, while the OIR+Mel group had improvement in destruction of retinal structure with reductions in neovascularization and perfusion-free area. Compared with the control group, the OIR group had significant increases in the expression of proteins and inflammatory factors associated with the HMGB1/NF-κB/NLRP3 axis, the expression of lymphocyte antigen 6G, and the activity of myeloperoxidase (P<0.05). Compared with the OIR group, the OIR+Mel group had significant reductions in the above indices (P<0.05). Compared with the control group, the OIR group had significant reductions in the expression of melatonin receptors in the retina (P<0.05). Compared with the OIR group, the OIR+Mel group had significant increases in the expression of melatonin receptors (P<0.05). Conclusions Mel can alleviate OIR-induced retinal damage in neonatal mice by inhibiting the HMGB1/NF-κB/NLRP3 axis and may exert an effect through the melatonin receptor pathway.

Key words

Melatonin / Oxygen-induced retinopathy / HMGB1/NF-κB/NLRP3 axis / Inflammation / Neonatal mouse

Cite this article

Download Citations
CHU Fang-Fang, ZHAO Yan-Song, ZHAO Yu-Ze, BAI Chen, XIAO Pei-Lun, WANG Xiao-Li, YU Shu-Na, JIANG Ji-Ying. Protective effect of melatonin against oxygen-induced retinopathy: a study based on the HMGB1/NF-κB/NLRP3 axis[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(6): 645-652 https://doi.org/10.7499/j.issn.1008-8830.2301036

References

1 Bancalari A, Schade R. Update in the treatment of retinopathy of prematurity[J]. Am J Perinatol, 2022, 39(1): 22-30. PMID: 32544962. DOI: 10.1055/s-0040-1713181.
2 Crooke A, Huete-Toral F, Colligris B, et al. The role and therapeutic potential of melatonin in age-related ocular diseases[J]. J Pineal Res, 2017, 63(2): e12430. PMID: 28658514. DOI: 10.1111/jpi.12430.
3 Xu Y, Cui K, Li J, et al. Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway[J]. J Pineal Res, 2020, 69(1): e12660. PMID: 32323368. DOI: 10.1111/jpi.12660.
4 Xu Y, Lu X, Hu Y, et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy mice[J]. J Pineal Res, 2018, 64(4): e12473. PMID: 29411894. DOI: 10.1111/jpi.12473.
5 Yan M, Wang H, Gu Y, et al. Melatonin exerts protective effects on diabetic retinopathy via inhibition of Wnt/β-catenin pathway as revealed by quantitative proteomics[J]. Exp Eye Res, 2021, 205: 108521. PMID: 33636209. DOI: 10.1016/j.exer.2021.108521.
6 Smith LE, Wesolowski E, McLellan A, et al. Oxygen-induced retinopathy in the mouse[J]. Invest Ophthalmol Vis Sci, 1994, 35(1): 101-111. PMID: 7507904.
7 Hartnett ME. Pathophysiology and mechanisms of severe retinopathy of prematurity[J]. Ophthalmology, 2015, 122(1): 200-210. PMID: 25444347. PMCID: PMC4277936. DOI: 10.1016/j.ophtha.2014.07.050.
8 Do?anlar ZB, Gü?lü H, ?ztopuz ?, et al. The role of melatonin in oxidative stress, DNA damage, apoptosis and angiogenesis in fetal eye under preeclampsia and melatonin deficiency stress[J]. Curr Eye Res, 2019, 44(10): 1157-1169. PMID: 31090463. DOI: 10.1080/02713683.2019.1619778.
9 马瑞, 马瑜徽, 张新月, 等. 不同褪黑素治疗方案对缺氧缺血性脑损伤新生大鼠脑白质损伤的影响[J]. 中国当代儿科杂志, 2021, 23(3): 300-305. PMID: 33691926. PMCID: PMC7969183. DOI: 10.7499/j.issn.1008-8830.2011132.
10 陈伟, 陈岚芬, 张梦蓓, 等. 不同褪黑素治疗方案对缺氧缺血性脑损伤新生大鼠内源性神经干细胞增殖的影响[J]. 中国当代儿科杂志,2019,21(8):830-835. PMID: 31416511. PMCID: PMC7389905. DOI:10.7499/j.issn.1008-8830.2019.08.017.
11 Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies[J]. Ageing Res Rev, 2015, 24(Pt A): 29-39. PMID: 25641058. DOI: 10.1016/j.arr.2015.01.003.
12 Dvoriantchikova G, Hernandez E, Grant J, et al. The high-mobility group box-1 nuclear factor mediates retinal injury after ischemia reperfusion[J]. Invest Ophthalmol Vis Sci, 2011, 52(10): 7187-7194. PMID: 21828158. PMCID: PMC3207720. DOI: 10.1167/iovs.11-7793.
13 Lee YM, Kim J, Jo K, et al. Ethyl pyruvate inhibits retinal pathogenic neovascularization by downregulating HMGB1 expression[J]. J Diabetes Res, 2013, 2013:245271. PMID: 24371837. PMCID: PMC3858882. DOI: 10.1155/2013/245271.
14 孙玉莹, 肖欧, 黄春雨. HMGB1-TLR4和Müller细胞在视网膜血管生成中的作用[J]. 山东第一医科大学(山东省医学科学院)学报, 2021, 42(5): 362-368. DOI: 10.3969/j.issn.2097-0005.2021.05.007.
15 Mugisho OO, Green CR. The NLRP3 inflammasome in age-related eye disease: evidence-based connexin hemichannel therapeutics[J]. Exp Eye Res, 2022, 215: 108911. PMID: 34958779. DOI: 10.1016/j.exer.2021.108911.
16 Jo EK, Kim JK, Shin DM, et al. Molecular mechanisms regulating NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2016, 13(2): 148-159. PMID: 26549800. PMCID: PMC4786634. DOI: 10.1038/cmi.2015.95.
17 Wang Y, Gao S, Gao S, et al. Blocking the interaction between interleukin-17A and endoplasmic reticulum stress in macrophage attenuates retinal neovascularization in oxygen-induced retinopathy[J]. Cell Biosci, 2021, 11(1): 82. PMID: 33933165. PMCID: PMC8088655. DOI: 10.1186/s13578-021-00593-6.
18 楚瑞雪, 孙先桃, 王惠. 基于miR-223/NLRP3轴研究柚皮素对氧诱导视网膜病变中小胶质细胞活化的影响[J]. 中国比较医学杂志, 2022, 32(2): 46-52. DOI: 10.3969/j.issn.1671-7856.2022.02.007.
19 Sui A, Chen X, Shen J, et al. Inhibiting the NLRP3 inflammasome with MCC950 ameliorates retinal neovascularization and leakage by reversing the IL-1β/IL-18 activation pattern in an oxygen-induced ischemic retinopathy mouse model[J]. Cell Death Dis, 2020, 11(10): 901. PMID: 33093455. PMCID: PMC7582915. DOI: 10.1038/s41419-020-03076-7.
20 Qi Y, Zhao M, Bai Y, et al. Retinal ischemia/reperfusion injury is mediated by toll-like receptor 4 activation of NLRP3 inflammasomes[J]. Invest Ophthalmol Vis Sci, 2014, 55(9): 5466-5475. PMID: 25097240. DOI: 10.1167/iovs.14-14380.
21 Zhang YL, Wang RB, Li WY, et al. Pioglitazone ameliorates retinal ischemia/reperfusion injury via suppressing NLRP3 inflammasome activities[J]. Int J Ophthalmol, 2017, 10(12):1812-1818. PMID: 29259897. PMCID: PMC5733506. DOI: 10.18240/ijo.2017.12.04.
22 Baba K, Pozdeyev N, Mazzoni F, et al. Melatonin modulates visual function and cell viability in the mouse retina via the MT1 melatonin receptor[J]. Proc Natl Acad Sci U S A, 2009, 106(35):15043-15048. PMID: 19706469. PMCID: PMC2736407. DOI: 10.1073/pnas.0904400106.
23 Jiang T, Chang Q, Cai J, et al. Protective effects of melatonin on retinal inflammation and oxidative stress in experimental diabetic retinopathy[J]. Oxid Med Cell Longev, 2016, 2016:3528274. PMID: 27143993. PMCID: PMC4837288. DOI: 10.1155/2016/3528274.
PDF(1976 KB)

Accesses

Citation

Detail

Sections
Recommended

/