Objective To study the effect of gut microbiota on hematopoiesis in a neonatal rat model of necrotizing enterocolitis (NEC). Methods Neonatal Sprague-Dawley rats were randomly divided into a control group and a model group (NEC group), with 6 rats in each group. Formula milk combined with hypoxia and cold stimulation was used to establish a neonatal rat model of NEC. Hematoxylin and eosin staining was used to observe the pathological changes of intestinal tissue and hematopoiesis-related organs. Routine blood tests were conducted for each group. Immunohistochemistry was used to observe the changes in specific cells in hematopoiesis-related organs. Flow cytometry was used to measure the changes in specific cells in bone marrow. 16S rDNA sequencing was used to observe the composition and abundance of gut microbiota. Results Compared with the control group, the NEC group had intestinal congestion and necrosis, damage, atrophy, and shedding of intestinal villi, and a significant increase in NEC histological score. Compared with the control group, the NEC group had significantly lower numbers of peripheral blood leukocytes and lymphocytes (P<0.05), nucleated cells in the spleen, thymus, and bone marrow, and small cell aggregates with basophilic nuclei in the liver (P<0.05). The NEC group had significant reductions in CD71+ erythroid progenitor cells in the liver, CD45+ lymphocytes in the spleen and bone marrow, CD3+ T lymphocytes in thymus, and the proportion of CD45+CD3-CD43+SSChi neutrophils in bone marrow (P<0.05). There was a significant difference in the composition of gut microbiota between the NEC and control groups, and the NEC group had a significant reduction in the abundance of Ligilactobacillus and a significant increase in the abundance of Escherichia-Shigella (P<0.05), which replaced Ligilactobacillus and became the dominant flora. Conclusions Multi-lineage hematopoietic disorder may be observed in a neonatal rat model of NEC, which may be associated with gut microbiota dysbiosis and abnormal multiplication of the pathogenic bacteria Escherichia-Shigella.
Key words
Necrotizing enterocolitis /
Hematopoietic disorder /
Gut microbiota /
Neonatal rat
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
1 Moschino L, Duci M, Fascetti Leon F, et al. Optimizing nutritional strategies to prevent necrotizing enterocolitis and growth failure after bowel resection[J]. Nutrients, 2021, 13(2): 340. PMID: 33498880. PMCID: PMC7910892. DOI: 10.3390/nu13020340.
2 Bazacliu C, Neu J. Necrotizing enterocolitis: long term complications[J]. Curr Pediatr Rev, 2019, 15(2): 115-124. PMID: 30864508. DOI: 10.2174/1573396315666190312093119.
3 Neu J. Necrotizing enterocolitis: the future[J]. Neonatology, 2020, 117(2): 240-244. PMID: 32155645. DOI: 10.1159/000506866.
4 Wu H, Guo K, Zhuo Z, et al. Current therapy option for necrotizing enterocolitis: practicalities and challenge[J]. Front Pediatr, 2022, 10: 954735. PMID: 35967586. PMCID: PMC9366471. DOI: 10.3389/fped.2022.954735.
5 杨佳慧, 石永言. Paneth细胞参与新生儿坏死性小肠结肠炎发病机制的研究进展[J]. 中华新生儿科杂志, 2023, 38(2): 121-124. DOI: 10.3760/cma.j.issn.2096-2932.2023.02.014.
6 Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications[J]. Exp Mol Med, 2018, 50(8): 1-9. PMID: 30115904. PMCID: PMC6095905. DOI: 10.1038/s12276-018-0126-x.
7 Hutter JJ, Hathaway WE, Wayne ER. Hematologic abnormalities in severe neonatal necrotizing enterocolitis[J]. J Pediatr, 1976, 88(6): 1026-1031. PMID: 1271173. DOI: 10.1016/s0022-3476(76)81069-4.
8 Kling PJ, Hutter JJ. Hematologic abnormalities in severe neonatal necrotizing enterocolitis: 25 years later[J]. J Perinatol, 2003, 23(7): 523-530. PMID: 14566346. DOI: 10.1038/sj.jp.7210983.
9 Ragazzi S, Pierro A, Peters M, et al. Early full blood count and severity of disease in neonates with necrotizing enterocolitis[J]. Pediatr Surg Int, 2003, 19(5): 376-379. PMID: 12756597. DOI: 10.1007/s00383-003-1014-5.
10 Yan H, Baldridge MT, King KY. Hematopoiesis and the bacterial microbiome[J]. Blood, 2018, 132(6): 559-564. PMID: 29853538. PMCID: PMC6085989. DOI: 10.1182/blood-2018-02-832519.
11 Huang K, Mukherjee S, Desmarais V, et al. Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis[J]. Pediatr Res, 2018, 83(5): 1031-1040. PMID: 29360809. PMCID: PMC5959752. DOI: 10.1038/pr.2018.14.
12 Yan X, Cao Y, Chen W, et al. Peptide (tat(48-60)) YVEEL protects against necrotizing enterocolitis through inhibition of Toll-like receptor 4-mediated signaling in a phosphatidylinositol 3-kinase/AKT dependent manner[J]. Front Nutr, 2022, 9: 992145. PMID: 36299988. PMCID: PMC9590307. DOI: 10.3389/fnut.2022.992145.
13 Barnett-Vanes A, Sharrock A, Birrell MA, et al. A single 9-colour flow cytometric method to characterise major leukocyte populations in the rat: validation in a model of LPS-induced pulmonary inflammation[J]. PLoS One, 2016, 11(1): e0142520. PMID: 26764486. PMCID: PMC4713146. DOI: 10.1371/journal.pone.0142520.
14 Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life[J]. Immunity, 2018, 48(2): 202-213. PMID: 29466753. PMCID: PMC5826622. DOI: 10.1016/j.immuni.2018.01.007.
15 Ratajczak MZ, Kucia M. Hematopoiesis and innate immunity: an inseparable couple for good and bad times, bound together by an hormetic relationship[J]. Leukemia, 2022, 36(1): 23-32. PMID: 34853440. PMCID: PMC8727304. DOI: 10.1038/s41375-021-01482-0.
16 Lewis K, Yoshimoto M, Takebe T. Fetal liver hematopoiesis: from development to delivery[J]. Stem Cell Res Ther, 2021, 12(1): 139. PMID: 33597015. PMCID: PMC7890853. DOI: 10.1186/s13287-021-02189-w.
17 Song J, Dong H, Xu F, et al. The association of severe anemia, red blood cell transfusion and necrotizing enterocolitis in neonates[J]. PLoS One, 2021, 16(7): e0254810. PMID: 34283868. PMCID: PMC8291682. DOI: 10.1371/journal.pone.0254810.
18 Wang Y, Song J, Sun H, et al. Erythropoietin prevents necrotizing enterocolitis in very preterm infants: a randomized controlled trial[J]. J Transl Med, 2020, 18(1): 308. PMID: 32771013. PMCID: PMC7414749. DOI: 10.1186/s12967-020-02459-w.
19 Hidalgo A, Libby P, Soehnlein O, et al. Neutrophil extracellular traps: from physiology to pathology[J]. Cardiovasc Res, 2022, 118(13): 2737-2753. PMID: 34648022. PMCID: PMC9586562. DOI: 10.1093/cvr/cvab329.
20 魏同, 席亚明, 毛夏丽, 等. 肠道微生态与造血关系的研究进展[J]. 临床血液学杂志, 2020, 33(3): 229-232. DOI: 10.13201/j.issn.1004-2806.2020.03.019.
21 Manzo VE, Bhatt AS. The human microbiome in hematopoiesis and hematologic disorders[J]. Blood, 2015, 126(3): 311-318. PMID: 26012569. PMCID: PMC4504946. DOI: 10.1182/blood-2015-04-574392.
22 Haas S, Trumpp A, Milsom MD. Causes and consequences of hematopoietic stem cell heterogeneity[J]. Cell Stem Cell, 2018, 22(5): 627-638. PMID: 29727678. DOI: 10.1016/j.stem.2018.04.003.
23 Espinoza JL, Kotecha R, Nakao S. Microbe-induced inflammatory signals triggering acquired bone marrow failure syndromes[J]. Front Immunol, 2017, 8: 186. PMID: 28286502. PMCID: PMC5323400. DOI: 10.3389/fimmu.2017.00186.
24 Takizawa H, Fritsch K, Kovtonyuk LV, et al. Pathogen-induced TLR4-TRIF innate immune signaling in hematopoietic stem cells promotes proliferation but reduces competitive fitness[J]. Cell Stem Cell, 2017, 21(2): 225-240.e5. PMID: 28736216. DOI: 10.1016/j.stem.2017.06.013.