Characteristics of the left heart structure and function in 86 term neonates with intrauterine growth restriction

LI Mo-Qi, DING Ying-Xue, CUI Hong, JIANG Li-Na, WANG Zi-Wei, LAI Yan-Ru, LI Bai-Hong, DING Wen-Hong

Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (10) : 1016-1021.

PDF(609 KB)
PDF(609 KB)
Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (10) : 1016-1021. DOI: 10.7499/j.issn.1008-8830.2304045
CLINICAL RESEARCH

Characteristics of the left heart structure and function in 86 term neonates with intrauterine growth restriction

  • LI Mo-Qi, DING Ying-Xue, CUI Hong, JIANG Li-Na, WANG Zi-Wei, LAI Yan-Ru, LI Bai-Hong, DING Wen-Hong
Author information +
History +

Abstract

Objective To study the left heart structure and functional characteristics of term neonates with intrauterine growth restriction (IUGR). Methods This study included 86 term neonates with IUGR admitted to the Neonatal Ward of Beijing Friendship Hospital, Capital Medical University from January 2019 to January 2022 as the IUGR group, as well as randomly selected 86 term neonates without IUGR born during the same period as the non-IUGR group. The clinical data and echocardiographic data were compared between the two groups. Results The analysis of left heart structure and function showed that compared with the non-IUGR group, the IUGR group had significantly lower left ventricular mass, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, left atrial diameter, end-diastolic interventricular septal thickness, left ventricular posterior wall thickness, left ventricular end-diastolic volume, left ventricular end-systolic volume, and stroke volume (P<0.05) and significantly higher ratio of end-diastolic interventricular septal thickness to left ventricular posterior wall thickness, proportion of neonates with a mitral peak E/A ratio of ≥1, and cardiac index (P<0.05). The Spearman correlation analysis suggested that stroke volume was positively correlated with birth weight and body surface area (rs=0.241 and 0.241 respectively; P<0.05) and that the ratio of end-diastolic interventricular septal thickness to left ventricular posterior wall thickness was negatively correlated with birth weight and body surface area (rs=-0.229 and -0.225 respectively; P<0.05). Conclusions The left ventricular systolic function of neonates with IUGR is not significantly different from that of neonates without IUGR. However, the ventricular septum is thicker in neonates with IUGR. This change is negatively correlated with birth weight and body surface area. The left ventricular diastolic function may be impaired in neonates with IUGR.

Key words

Intrauterine growth restriction / Left heart structure / Left heart function / Echocardiography / Case-control study / Neonate

Cite this article

Download Citations
LI Mo-Qi, DING Ying-Xue, CUI Hong, JIANG Li-Na, WANG Zi-Wei, LAI Yan-Ru, LI Bai-Hong, DING Wen-Hong. Characteristics of the left heart structure and function in 86 term neonates with intrauterine growth restriction[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(10): 1016-1021 https://doi.org/10.7499/j.issn.1008-8830.2304045

References

1 Aplin JD, Myers JE, Timms K, et al. Tracking placental development in health and disease[J]. Nat Rev Endocrinol, 2020, 16(9): 479-494. PMID: 32601352. DOI: 10.1038/s41574-020-0372-6.
2 Fetal growth restriction: ACOG practice bulletin, number 227[J]. Obstet Gynecol, 2021, 137(2): e16-e28. PMID: 33481528. DOI: 10.1097/AOG.0000000000004251.
3 Araujo Júnior E, Zamarian AC, Caetano AC, et al. Physiopathology of late-onset fetal growth restriction[J]. Minerva Obstet Gynecol, 2021, 73(4): 392-408. PMID: 33876907. DOI: 10.23736/S2724-606X.21.04771-7.
4 Guitart-Mampel M, Juarez-Flores DL, Youssef L, et al. Mitochondrial implications in human pregnancies with intrauterine growth restriction and associated cardiac remodelling[J]. J Cell Mol Med, 2019, 23(6): 3962-3973. PMID: 30941904. PMCID: PMC6533501. DOI: 10.1111/jcmm.14282.
5 Katz J, Lee AC, Kozuki N, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis[J]. Lancet, 2013, 382(9890): 417-425. PMID: 23746775. PMCID: PMC3796350. DOI: 10.1016/S0140-6736(13)60993-9.
6 Amruta N, Kandikattu HK, Intapad S. Cardiovascular dysfunction in intrauterine growth restriction[J]. Curr Hypertens Rep, 2022, 24(12): 693-708. PMID: 36322299. DOI: 10.1007/s11906-022-01228-y.
7 Zanardo V, Fanelli T, Weiner G, et al. Intrauterine growth restriction is associated with persistent aortic wall thickening and glomerular proteinuria during infancy[J]. Kidney Int, 2011, 80(1): 119-123. PMID: 21490588. PMCID: PMC3257045. DOI: 10.1038/ki.2011.99.
8 Patey O, Carvalho JS, Thilaganathan B. Perinatal changes in cardiac geometry and function in growth-restricted fetuses at term[J]. Ultrasound Obstet Gynecol, 2019, 53(5): 655-662. PMID: 30084123. DOI: 10.1002/uog.19193.
9 Bullough S, Navaratnam K, Sharp A. Investigation and management of the small for gestational age fetus[J]. Obstet Gynaecol Reprod Med, 2021, 31(1): 1-7. DOI: 10.1016/j.ogrm.2020.11.002.
10 中华医学会围产医学分会胎儿医学学组, 中华医学会妇产科学分会产科学组. 胎儿生长受限专家共识(2019版)[J]. 中国产前诊断杂志(电子版), 2019, 11(4): 78-98. DOI: 10.13470/j.cnki.cjpd.2019.04.017.
11 Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings[J]. Am J Cardiol, 1986, 57(6): 450-458. PMID: 2936235. DOI: 10.1016/0002-9149(86)90771-x.
12 Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(2): 165373. PMID: 30684642. PMCID: PMC6650384. DOI: 10.1016/j.bbadis.2018.12.024.
13 Cruz-Lemini M, Crispi F, Valenzuela-Alcaraz B, et al. Fetal cardiovascular remodeling persists at 6 months in infants with intrauterine growth restriction[J]. Ultrasound Obstet Gynecol, 2016, 48(3): 349-356. PMID: 26415719. DOI: 10.1002/uog.15767.
14 Crispi F, Crovetto F, Gratacos E. Intrauterine growth restriction and later cardiovascular function[J]. Early Hum Dev, 2018, 126: 23-27. PMID: 30206007. DOI: 10.1016/j.earlhumdev.2018.08.013.
15 Frasch MG, Giussani DA. Impact of chronic fetal hypoxia and inflammation on cardiac pacemaker cell development[J]. Cells, 2020, 9(3): 733. PMID: 32192015. PMCID: PMC7140710. DOI: 10.3390/cells9030733.
16 Botting KJ, Loke XY, Zhang S, et al. IUGR decreases cardiomyocyte endowment and alters cardiac metabolism in a sex- and cause-of-IUGR-specific manner[J]. Am J Physiol Regul Integr Comp Physiol, 2018, 315(1): R48-R67. PMID: 29561647. DOI: 10.1152/ajpregu.00180.2017.
17 Fouzas S, Karatza AA, Davlouros PA, et al. Neonatal cardiac dysfunction in intrauterine growth restriction[J]. Pediatr Res, 2014, 75(5): 651-657. PMID: 24522102. DOI: 10.1038/pr.2014.22.
18 Vangrieken P, Remels AHV, Al-Nasiry S, et al. Placental hypoxia-induced alterations in vascular function, morphology, and endothelial barrier integrity[J]. Hypertens Res, 2020, 43(12): 1361-1374. PMID: 32733105. DOI: 10.1038/s41440-020-0528-8.
19 Vangrieken P, Al-Nasiry S, Janssen GMJ, et al. The direct and sustained consequences of severe placental hypoxia on vascular contractility[J]. PLoS One, 2018, 13(8): e0202648. PMID: 30142162. PMCID: PMC6108468. DOI: 10.1371/journal.pone.0202648.
20 Mahle WT, Rychik J, Tian ZY, et al. Echocardiographic evaluation of the fetus with congenital cystic adenomatoid malformation[J]. Ultrasound Obstet Gynecol, 2000, 16(7): 620-624. PMID: 11169367. DOI: 10.1046/j.1469-0705.2000.00254.x.
21 Crispi F, Hernandez-Andrade E, Pelsers MM, et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses[J]. Am J Obstet Gynecol, 2008, 199(3): 254.e1-254.e8. PMID: 18771973. DOI: 10.1016/j.ajog.2008.06.056.
22 Naujorks AA, Zielinsky P, Beltrame PA, et al. Myocardial tissue Doppler assessment of diastolic function in the growth-restricted fetus[J]. Ultrasound Obstet Gynecol, 2009, 34(1): 68-73. PMID: 19565528. DOI: 10.1002/uog.6427.
23 Li W, Mata KM, Mazzuca MQ, et al. Altered matrix metalloproteinase-2 and -9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy[J]. Biochem Pharmacol, 2014, 89(3): 370-385. PMID: 24704473. PMCID: PMC4034157. DOI: 10.1016/j.bcp.2014.03.017.
24 Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension[J]. Lancet, 1997, 350(9082): 953-955. PMID: 9314885. DOI: 10.1016/s0140-6736(96)10508-0.
25 Goedegebuure WJ, Van der Steen M, Smeets CCJ, et al. SGA-born adults with postnatal catch-up have a persistently unfavourable metabolic health profile and increased adiposity at age 32 years[J]. Eur J Endocrinol, 2022, 187(1): 15-26. PMID: 35521698. DOI: 10.1530/EJE-21-1130.
26 Sebastiani G, Díaz M, Bassols J, et al. The sequence of prenatal growth restraint and post-natal catch-up growth leads to a thicker intima-media and more pre-peritoneal and hepatic fat by age 3-6 years[J]. Pediatr Obes, 2016, 11(4): 251-257. PMID: 26132470. DOI: 10.1111/ijpo.12053.
27 Díaz M, Campderrós L, Guimaraes MP, et al. Circulating growth-and-differentiation factor-15 in early life: relation to prenatal and postnatal growth and adiposity measurements[J]. Pediatr Res, 2020, 87(5): 897-902. PMID: 31645058. DOI: 10.1038/s41390-019-0633-z.
PDF(609 KB)

Accesses

Citation

Detail

Sections
Recommended

/