Construction of a predictive model for performing bronchoalveolar lavage in children with Mycoplasma pneumoniae pneumonia and pulmonary consolidation

WANG Shu-Ye, ZHANG Wen-Bo, WAN Yu

Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (10) : 1052-1058.

PDF(757 KB)
PDF(757 KB)
Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (10) : 1052-1058. DOI: 10.7499/j.issn.1008-8830.2305113
CLINICAL RESEARCH

Construction of a predictive model for performing bronchoalveolar lavage in children with Mycoplasma pneumoniae pneumonia and pulmonary consolidation

  • WANG Shu-Ye1,2, ZHANG Wen-Bo1,2, WAN Yu2
Author information +
History +

Abstract

Objective To investigate the risk factors for performing bronchoalveolar lavage (BAL) in children with Mycoplasma pneumoniae pneumonia (MPP) and pulmonary consolidation, and to construct a predictive model for performing BAL in these children. Methods A retrospective analysis was performed for the clinical data of 202 children with MPP who were hospitalized in the Department of Pediatrics, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, from August 2019 to September 2022. According to whether BAL was performed, they were divided into BAL group with 100 children and non-BAL group with 102 children. A multivariate logistic regression analysis was used to identify the risk factors for performing BAL in MPP children with pulmonary consolidation. Rstudio software (R4.2.3) was used to establish a predictive model for performing BAL, and the receiver operator characteristic (ROC) curve, C-index, and calibration curve were used to assess the predictive performance of the model. Results The multivariate logistic regression analysis demonstrated that the fever duration, C-reactive protein levels, D-dimer levels, and presence of pleural effusion were risk factors for performing BAL in MPP children with pulmonary consolidation (P<0.05). A nomogram predictive model was established based on the results of the multivariate logistic regression analysis. In the training set, this model had an area under the ROC curve of 0.915 (95%CI: 0.827-0.938), with a sensitivity of 0.826 and a specificity of 0.875, while in the validation set, it had an area under the ROC curve of 0.983 (95%CI: 0.912-0.996), with a sensitivity of 0.879 and a specificity of 1.000. The Bootstrap-corrected C-index was 0.952 (95%CI: 0.901-0.986), and the calibration curve demonstrated good consistency between the predicted probability of the model and the actual probability of occurrence. Conclusions The predictive model established in this study can be used to assess the likelihood of performing BAL in MPP children with pulmonary consolidation, based on factors such as fever duration, C-reactive protein levels, D-dimer levels, and the presence of pleural effusion. Additionally, the model demonstrates good predictive performance.

Key words

Mycoplasma pneumoniae pneumonia / Pulmonary consolidation / Bronchoalveolar lavage / Risk factor / Predictive model / Child

Cite this article

Download Citations
WANG Shu-Ye, ZHANG Wen-Bo, WAN Yu. Construction of a predictive model for performing bronchoalveolar lavage in children with Mycoplasma pneumoniae pneumonia and pulmonary consolidation[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(10): 1052-1058 https://doi.org/10.7499/j.issn.1008-8830.2305113

References

1 Zhao J, Ji X, Wang Y, et al. Clinical role of serum interleukin-17a in the prediction of refractory Mycoplasma pneumoniae pneumonia in children[J]. Infect Drug Resist, 2020, 13: 835-843. PMID: 32210598. PMCID: PMC7076716. DOI: 10.2147/IDR.S240034.
2 Huang L, Huang X, Jiang W, et al. Independent predictors for longer radiographic resolution in patients with refractory Mycoplasma pneumoniae pneumonia: a prospective cohort study[J]. BMJ Open, 2018, 8(12): e023719. PMID: 30567824. PMCID: PMC6303577. DOI: 10.1136/bmjopen-2018-023719.
3 Dunican EM, Elicker BM, Gierada DS, et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction[J]. J Clin Invest, 2018, 128(3): 997-1009. PMID: 29400693. PMCID: PMC5824874. DOI: 10.1172/JCI95693.
4 Zhang J, Wang T, Li R, et al. Prediction of risk factors of bronchial mucus plugs in children with Mycoplasma pneumoniae pneumonia[J]. BMC Infect Dis, 2021, 21(1): 67. PMID: 33441105. PMCID: PMC7805118. DOI: 10.1186/s12879-021-05765-w.
5 赵顺英, 陈志敏, 刘瀚旻, 等. 国家卫生健康委员会《儿童肺炎支原体肺炎诊治指南(2023年版)》重点解读[J]. 临床儿科杂志, 2023, 41(3): 224-228. DOI: 10.12372/jcp.2023.22e0475.
6 国家卫生健康委员会人才交流服务中心儿科呼吸内镜诊疗技术专家组, 中国医师协会儿科医师分会内镜专业委员会, 中国医师协会内镜医师分会儿科呼吸内镜专业委员会, 等. 中国儿科可弯曲支气管镜术指南(2018年版)[J]. 中华实用儿科临床杂志, 2018, 33(13): 983-989. DOI: 10.3760/cma.j.issn.2095-428X.2018.13.006.
7 张悦鸣, 张雯. 影响儿童大叶性肺炎支气管镜下治疗次数的危险因素分析[J]. 临床肺科杂志, 2021, 26(1): 70-73. DOI: 10.3969/j.issn.1009-6663.2021.01.016.
8 Jiang Z, Li S, Zhu C, et al. Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development [J]. Pathogens, 2021, 10(2). DOI:10.3390/pathogens10020119.
9 Xu Q, Zhang L, Hao C, et al. Prediction of bronchial mucus plugs formation in patients with refractory Mycoplasma pneumoniae pneumonia[J]. J Trop Pediatr, 2017, 63(2): 148-154. PMID: 27686558. DOI: 10.1093/tropej/fmw064.
10 Xu X, Li H, Sheng Y, et al. Nomogram for prediction of bronchial mucus plugs in children with Mycoplasma pneumoniae pneumonia[J]. Sci Rep, 2020, 10(1): 4579. PMID: 32165709. PMCID: PMC7067858. DOI: 10.1038/s41598-020-61348-w.
11 国家卫生健康委员会人才交流服务中心儿科呼吸内镜诊疗技术项目专家组, 中国医师协会儿科医师分会内镜专业委员会, 中国医师协会内镜医师分会儿科呼吸内镜专业委员会, 等. 中国儿童难治性肺炎呼吸内镜介入诊疗专家共识[J]. 中国实用儿科杂志, 2019, 34(6): 449-457. DOI: 10.19538/j.ek2019060601.
12 Wongsurakiat P, Chitwarakorn N. Severe community-acquired pneumonia in general medical wards: outcomes and impact of initial antibiotic selection[J]. BMC Pulm Med, 2019, 19(1): 179. PMID: 31619219. PMCID: PMC6794881. DOI: 10.1186/s12890-019-0944-1.
13 石泽亚, 秦月兰, 祝益民, 等. 纤维支气管镜肺泡灌洗联合振动排痰治疗重症肺炎机械通气患者的效果观察: 一项286例患者前瞻性随机对照研究[J]. 中华危重病急救医学, 2017, 29(1): 66-70. PMID: 28459407. DOI: 10.3760/cma.j.issn.2095-4352.2017.01.014.
14 顾海燕, 王全, 赵德育. D二聚体与肺炎支原体肺炎严重程度相关性分析[J]. 中国实用儿科杂志, 2016, 31(9): 694-697. DOI: 10.7504/ek2016090615.
15 Bi Y, Zhu Y, Ma X, et al. Development of a scale for early prediction of refractory Mycoplasma pneumoniae pneumonia in hospitalized children[J]. Sci Rep, 2021, 11(1): 6595. PMID: 33758243. PMCID: PMC7987979. DOI: 10.1038/s41598-021-86086-5.
16 Jin X, Zhu Y, Zhang Y, et al. Assessment of levels of D-dimer and interferon-γ in pediatric patients with Mycoplasma pneumoniae pneumonia and its clinical implication[J]. Exp Ther Med, 2018, 16(6): 5025-5030. PMID: 30546408. PMCID: PMC6256836. DOI: 10.3892/etm.2018.6873.
17 Masters IB, Isles AF, Grimwood K. Necrotizing pneumonia: an emerging problem in children?[J]. Pneumonia (Nathan), 2017, 9: 11. PMID: 28770121. PMCID: PMC5525269. DOI: 10.1186/s41479-017-0035-0.
18 Cui N, Zhang H, Chen Z, et al. Prognostic significance of PCT and CRP evaluation for adult ICU patients with sepsis and septic shock: retrospective analysis of 59 cases[J]. J Int Med Res, 2019, 47(4): 1573-1579. PMID: 30656987. PMCID: PMC6460616. DOI: 10.1177/0300060518822404.
19 Tang JH, Gao DP, Zou PF. Comparison of serum PCT and CRP levels in patients infected by different pathogenic microorganisms: a systematic review and meta-analysis[J]. Braz J Med Biol Res, 2018, 51(7): e6783. PMID: 29846409. PMCID: PMC5995041. DOI: 10.1590/1414-431x20176783.
20 Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection[J]. Front Immunol, 2018, 9: 754. PMID: 29706967. PMCID: PMC5908901. DOI: 10.3389/fimmu.2018.00754.
PDF(757 KB)

Accesses

Citation

Detail

Sections
Recommended

/