Relationship of triglyceride-glucose index and its derivatives with blood pressure abnormalities in adolescents: an analysis based on a restricted cubic spline model

TIAN Mei, MA Xiao-Yan, TONG Ling-Ling, JIA Lei-Na, DING Wen-Qing

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (1) : 54-61.

PDF(1234 KB)
HTML
PDF(1234 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (1) : 54-61. DOI: 10.7499/j.issn.1008-8830.2306049
CLINICAL RESEARCH

Relationship of triglyceride-glucose index and its derivatives with blood pressure abnormalities in adolescents: an analysis based on a restricted cubic spline model

  • TIAN Mei, MA Xiao-Yan, TONG Ling-Ling, JIA Lei-Na, DING Wen-Qing
Author information +
History +

Abstract

Objective To explore the relationship of triglyceride-glucose index (TyG), triglyceride-glucose-body mass index (TyG-BMI), and triglyceride-glucose-waist circumference index (TyG-WC) with blood pressure abnormalities in adolescents, providing theoretical basis for the prevention and control of hypertension in adolescents. Methods A stratified cluster sampling method was used to select 1 572 adolescents aged 12 to 18 years in Yinchuan City for questionnaire surveys, physical measurements, and laboratory tests. Logistic regression analysis and restricted cubic spline analysis were employed to examine the relationship of TyG, TyG-BMI, and TyG-WC with blood pressure abnormalities in adolescents. Results Multivariable logistic regression analysis revealed that after adjusting for confounding factors, the groups with the highest quartile of TyG, TyG-BMI, and TyG-WC had 1.48 times (95%CI: 1.07-2.04), 3.71 times (95%CI: 2.67-5.15), and 4.07 times (95%CI: 2.89-5.73) higher risks of blood pressure abnormalities compared to the groups with the lowest quartile, respectively. Moreover, as the levels of TyG, TyG-BMI, and TyG-WC increased, the risk of blood pressure abnormalities gradually increased (P<0.05). A non-linear dose-response relationship was observed between TyG-BMI and the risk of blood pressure abnormalities (Poverall trend<0.001, Pnon-linearity=0.002). Linear dose-response relationships were found between TyG and the risk of blood pressure abnormalities (Poverall trend<0.001, Pnon-linearit =0.232), and between TyG-WC and the risk of blood pressure abnormalities (Poverall trend<0.001, Pnon-linearity=0.224). Conclusions Higher levels of TyG and its derivatives are associated with an increased risk of blood pressure abnormalities in adolescents, with linear or non-linear dose-response relationships.

Key words

Triglyceride-glucose index / Triglyceride-glucose-body mass index / Triglyceride-glucose-waist circumference index / Blood pressure / Adolescent

Cite this article

Download Citations
TIAN Mei, MA Xiao-Yan, TONG Ling-Ling, JIA Lei-Na, DING Wen-Qing. Relationship of triglyceride-glucose index and its derivatives with blood pressure abnormalities in adolescents: an analysis based on a restricted cubic spline model[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(1): 54-61 https://doi.org/10.7499/j.issn.1008-8830.2306049

References

1 Wang L, Song L, Liu B, et al. Trends and status of the prevalence of elevated blood pressure in children and adolescents in China: a systematic review and meta-analysis[J]. Curr Hypertens Rep, 2019, 21(11): 88. PMID: 31599364. DOI: 10.1007/s11906-019-0992-1.
2 Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis[J]. Circulation, 2008, 117(25): 3171-3180. PMID: 18559702. PMCID: PMC3568631. DOI: 10.1161/CIRCULATIONAHA.107.730366.
3 Yang L, Magnussen CG, Yang L, et al. Elevated blood pressure in childhood or adolescence and cardiovascular outcomes in adulthood: a systematic review[J]. Hypertension, 2020, 75(4): 948-955. PMID: 32114851. DOI: 10.1161/HYPERTENSIONAHA.119.14168.
4 Tagi VM, Mainieri F, Chiarelli F. Hypertension in patients with insulin resistance: etiopathogenesis and management in children[J]. Int J Mol Sci, 2022, 23(10): 5814. PMID: 35628624. PMCID: PMC9144705. DOI: 10.3390/ijms23105814.
5 Bala C, Gheorghe-Fronea O, Pop D, et al. The association between six surrogate insulin resistance indexes and hypertension: a population-based study[J]. Metab Syndr Relat Disord, 2019, 17(6): 328-333. PMID: 31034338. DOI: 10.1089/met.2018.0122.
6 Zeng ZY, Liu SX, Xu H, et al. Association of triglyceride glucose index and its combination of obesity indices with prehypertension in lean individuals: a cross-sectional study of Chinese adults[J]. J Clin Hypertens (Greenwich), 2020, 22(6): 1025-1032. PMID: 32442359. PMCID: PMC8029919. DOI: 10.1111/jch.13878.
7 周金玉, 白玲, 佟玲玲, 等. 银川市青少年体脂肪分布与骨矿物质含量的关系[J]. 中国学校卫生, 2022, 43(9): 1376-1379. DOI: 10.16835/j.cnki.1000-9817.2022.09.023.
8 Falkner B, Daniels SR. Summary of the fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents[J]. Hypertension, 2004, 44(4): 387-388. PMID: 15353515. DOI: 10.1161/01.HYP.0000143545.54637.af.
9 范晖, 闫银坤, 米杰. 中国3~17岁儿童性别、年龄别和身高别血压参照标准[J]. 中华高血压杂志, 2017, 25(5): 428-435. DOI: 10.16439/j.cnki.1673-7245.2017.05.009.
10 Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects[J]. Metab Syndr Relat Disord, 2008, 6(4): 299-304. PMID: 19067533. DOI: 10.1089/met.2008.0034.
11 Khamseh ME, Malek M, Abbasi R, et al. Triglyceride glucose index and related parameters (triglyceride glucose-body mass index and triglyceride glucose-waist circumference) identify nonalcoholic fatty liver and liver fibrosis in individuals with overweight/obesity[J]. Metab Syndr Relat Disord, 2021, 19(3): 167-173. PMID: 33259744. DOI: 10.1089/met.2020.0109.
12 Li X, Sun M, Yang Y, et al. Predictive effect of triglyceride glucose-related parameters, obesity indices, and lipid ratios for diabetes in a Chinese population: a prospective cohort study[J]. Front Endocrinol (Lausanne), 2022, 13: 862919. PMID: 35432185. PMCID: PMC9007200. DOI: 10.3389/fendo.2022.862919.
13 Song S, Son DH, Baik SJ, et al. Triglyceride glucose-waist circumference (TyG-WC) is a reliable marker to predict non-alcoholic fatty liver disease[J]. Biomedicines, 2022, 10(9): 2251. PMID: 36140352. PMCID: PMC9496145. DOI: 10.3390/biomedicines10092251.
14 Wang A, Wang G, Liu Q, et al. Triglyceride-glucose index and the risk of stroke and its subtypes in the general population: an 11-year follow-up[J]. Cardiovasc Diabetol, 2021, 20(1): 46. PMID: 33602208. PMCID: PMC7893902. DOI: 10.1186/s12933-021-01238-1.
15 Rattanatham R, Tangpong J, Chatatikun M, et al. Assessment of eight insulin resistance surrogate indexes for predicting metabolic syndrome and hypertension in Thai law enforcement officers[J]. PeerJ, 2023, 11: e15463. PMID: 37273533. PMCID: PMC10234272. DOI: 10.7717/peerj.15463.
16 Yuan Y, Sun W, Kong X. Comparison between distinct insulin resistance indices in measuring the development of hypertension: the China health and nutrition survey[J]. Front Cardiovasc Med, 2022, 9: 912197. PMID: 36277749. PMCID: PMC9582523. DOI: 10.3389/fcvm.2022.912197.
17 Wang A, Tian X, Zuo Y, et al. Change in triglyceride-glucose index predicts the risk of cardiovascular disease in the general population: a prospective cohort study[J]. Cardiovasc Diabetol, 2021, 20(1): 113. PMID: 34039351. PMCID: PMC8157734. DOI: 10.1186/s12933-021-01305-7.
18 Chen L, He L, Zheng W, et al. High triglyceride glucose-body mass index correlates with prehypertension and hypertension in east Asian populations: a population-based retrospective study[J]. Front Cardiovasc Med, 2023, 10: 1139842. PMID: 37180805. PMCID: PMC10166815. DOI: 10.3389/fcvm.2023.1139842.
19 栾威, 汪俊华, 赵否曦, 等. 甘油三酯葡萄糖乘积指数与高血压发病风险关联的队列研究[J]. 中国慢性病预防与控制, 2022, 30(10): 731-735. DOI: 10.16386/j.cjpccd.issn.1004-6194.2022.10.003.
20 Koay YC, Coster ACF, Chen DL, et al. Metabolomics and lipidomics signatures of insulin resistance and abdominal fat depots in people living with obesity[J]. Metabolites, 2022, 12(12): 1272. PMID: 36557310. PMCID: PMC9781703. DOI: 10.3390/metabo12121272.
21 Trouwborst I, Bowser SM, Goossens GH, et al. Ectopic fat accumulation in distinct insulin resistant phenotypes; targets for personalized nutritional interventions[J]. Front Nutr, 2018, 5: 77. PMID: 30234122. PMCID: PMC6131567. DOI: 10.3389/fnut.2018.00077.
22 Caprio S, Perry R, Kursawe R. Adolescent obesity and insulin resistance: roles of ectopic fat accumulation and adipose inflammation[J]. Gastroenterology, 2017, 152(7): 1638-1646. PMID: 28192105. PMCID: PMC9390070. DOI: 10.1053/j.gastro.2016.12.051.
23 Kozawa J, Shimomura I. Ectopic fat accumulation in pancreas and heart[J]. J Clin Med, 2021, 10(6): 1326. PMID: 33806978. PMCID: PMC8004936. DOI: 10.3390/jcm10061326.
24 Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease[J]. J Clin Invest, 2017, 127(1): 1-4. PMID: 28045402. PMCID: PMC5199709. DOI: 10.1172/JCI92035.
25 Esser N, Legrand-Poels S, Piette J, et al. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes[J]. Diabetes Res Clin Pract, 2014, 105(2): 141-150. PMID: 24798950. DOI: 10.1016/j.diabres.2014.04.006.
26 Amponsah-Offeh M, Diaba-Nuhoho P, Speier S, et al. Oxidative stress, antioxidants and hypertension[J]. Antioxidants (Basel), 2023, 12(2): 281. PMID: 36829839. PMCID: PMC9952760. DOI: 10.3390/antiox12020281.
27 Le Brocq M, Leslie SJ, Milliken P, et al. Endothelial dysfunction: from molecular mechanisms to measurement, clinical implications, and therapeutic opportunities[J]. Antioxid Redox Signal, 2008, 10(9): 1631-1674. PMID: 18598143. DOI: 10.1089/ars.2007.2013.
28 Gu Q, Hu X, Meng J, et al. Associations of triglyceride-glucose index and its derivatives with hyperuricemia risk: a cohort study in Chinese general population[J]. Int J Endocrinol, 2020, 2020: 3214716. PMID: 33014043. PMCID: PMC7519459. DOI: 10.1155/2020/3214716.
29 Cheng Y, Fang Z, Zhang X, et al. Association between triglyceride glucose-body mass index and cardiovascular outcomes in patients undergoing percutaneous coronary intervention: a retrospective study[J]. Cardiovasc Diabetol, 2023, 22(1): 75. PMID: 36997935. PMCID: PMC10064664. DOI: 10.1186/s12933-023-01794-8.
30 Song P, Zhang Y, Yu J, et al. Global prevalence of hypertension in children: a systematic review and meta-analysis[J]. JAMA Pediatr, 2019, 173(12): 1154-1163. PMID: 31589252. PMCID: PMC6784751. DOI: 10.1001/jamapediatrics.2019.3310.
31 Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences[J]. Obes Rev, 2010, 11(1): 11-18. PMID: 19656312. DOI: 10.1111/j.1467-789X.2009.00623.x.
32 Rosano GM, Aversa A, Vitale C, et al. Chronic treatment with tadalafil improves endothelial function in men with increased cardiovascular risk[J]. Eur Urol, 2005, 47(2): 214-220; discussion 220-222. PMID: 15661417. DOI: 10.1016/j.eururo.2004.10.002.
33 Tramunt B, Smati S, Grandgeorge N, et al. Sex differences in metabolic regulation and diabetes susceptibility[J]. Diabetologia, 2020, 63(3): 453-461. PMID: 31754750. PMCID: PMC6997275. DOI: 10.1007/s00125-019-05040-3.
34 Abdel-Mottaleb Y, Ali HS, El-Kherbetawy MK, et al. Saponin-rich extract of Tribulus terrestris alleviates systemic inflammation and insulin resistance in dietary obese female rats: impact on adipokine/hormonal disturbances[J]. Biomed Pharmacother, 2022, 147: 112639. PMID: 35051859. DOI: 10.1016/j.biopha.2022.112639.
PDF(1234 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/