Research progress on the mechanism of β-lactam resistance in group A Streptococci in vivo

GUO Meng-Yang, YAO Kai-Hu

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (1) : 92-97.

PDF(623 KB)
HTML
PDF(623 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (1) : 92-97. DOI: 10.7499/j.issn.1008-8830.2306157
REVIEW

Research progress on the mechanism of β-lactam resistance in group A Streptococci in vivo

  • GUO Meng-Yang, YAO Kai-Hu
Author information +
History +

Abstract

β-lactams, including penicillin, have been used for over 80 years in the treatment of group A Streptococcus (GAS) infections. Although β-lactam-resistant GAS strains have not been identified in vitro tests, clinical treatment failures have been reported since the 1950s. The mechanism underlying the clinical failure of β-lactam treatment in GAS infections remains unclear. Previous research has suggested that β-lactam resistance in GAS in vivo is associated with reduced drug susceptibility of strains, bacterial inoculation effects, biofilm formation, the effect of coexisting bacteria, bacterial persistence, and bacterial internalization into host cells. This article reviews the main reports on β-lactam treatment failure in GAS infections and analyzes the possible mechanisms of β-lactam resistance in vivo. The findings aim to contribute to future research and clinical approaches in the field.

Key words

Group A Streptococcus / Streptococcus pyogenes / Penicillin / β-lactam / Treatment failure

Cite this article

Download Citations
GUO Meng-Yang, YAO Kai-Hu. Research progress on the mechanism of β-lactam resistance in group A Streptococci in vivo[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(1): 92-97 https://doi.org/10.7499/j.issn.1008-8830.2306157

References

1 Moore HC, Cannon JW, Kaslow DC, et al. A systematic framework for prioritizing burden of disease data required for vaccine development and implementation: the case for group A streptococcal diseases[J]. Clin Infect Dis, 2022, 75(7): 1245-1254. PMID: 35438130. PMCID: PMC9525082. DOI: 10.1093/cid/ciac291.
2 Brouwer S, Rivera-Hernandez T, Curren BF, et al. Pathogenesis, epidemiology and control of group A Streptococcus infection[J]. Nat Rev Microbiol, 2023, 21(7): 431-447. PMID: 36894668. PMCID: PMC9998027. DOI: 10.1038/s41579-023-00865-7.
3 Centers for Disease Control and Prevention. Group A Streptococcal (GAS) disease[EB/OL]. (2022-06-27)[2023-05-18]. https://www.cdc.gov/groupastrep/diseases-hcp/strep-throat.html#treatment.
4 禹定乐, 郑跃杰, 申昆玲, 等. 《中国儿童A族链球菌感染相关疾病的诊断、治疗与预防专家共识》解读[J]. 中华实用儿科临床杂志, 2023, 38(5): 327-330. DOI: 10.3760/cma.j.cn101070-20230109-00017.
5 Eagle H. Experimental approach to the problem of treatment failure with penicillin: I. group A streptococcal infection in mice[J]. Am J Med, 1952, 13(4): 389-399. PMID: 12985596. DOI: 10.1016/0002-9343(52)90293-3.
6 Markowitz M, Gerber MA, Kaplan EL. Treatment of streptococcal pharyngotonsillitis: reports of penicillin's demise are premature[J]. J Pediatr, 1993, 123(5): 679-685. PMID: 8229474. DOI: 10.1016/s0022-3476(05)80840-6.
7 Gastanaduy AS, Kaplan EL, Huwe BB, et al. Failure of penicillin to eradicate group A Streptococci during an outbreak of pharyngitis[J]. Lancet, 1980, 2(8193): 498-502. PMID: 6105559. DOI: 10.1016/s0140-6736(80)91832-2.
8 Smith TD, Huskins WC, Kim KS, et al. Efficacy of beta-lactamase-resistant penicillin and influence of penicillin tolerance in eradicating Streptococci from the pharynx after failure of penicillin therapy for group A streptococcal pharyngitis[J]. J Pediatr, 1987, 110(5): 777-782. PMID: 3106607. DOI: 10.1016/s0022-3476(87)80023-9.
9 Stjernquist-Desatnik A, Orrling A, Schalén C, et al. Penicillin tolerance in group A Streptococci and treatment failure in streptococcal tonsillitis[J]. Acta Otolaryngol Suppl, 1992, 492: 68-71. PMID: 1632256. DOI: 10.3109/00016489209136813.
10 Gidengil CA, Kruskal BA, Lee GM. Initial antibiotic choice in the treatment of group a streptococcal pharyngitis and return visit rates[J]. J Pediatric Infect Dis Soc, 2013, 2(4): 361-367. PMID: 26619498. DOI: 10.1093/jpids/pit043.
11 de Dassel JL, Malik H, Ralph AP, et al. Four-weekly benzathine penicillin G provides inadequate protection against acute rheumatic fever in some children[J]. Am J Trop Med Hyg, 2019, 100(5): 1118-1120. PMID: 30915960. PMCID: PMC6493956. DOI: 10.4269/ajtmh.18-0907.
12 韦朝华, 俞黎黎, 霍江华, 等. 青霉素作用机制的研究进展及其假说[J]. 科技咨讯, 2018, 16(19): 230-232, 234. DOI: 10.16661/j.cnki.1672-3791.2018.19.230.
13 Oliver J, Bennett J, Thomas S, et al. Preceding group A Streptococcus skin and throat infections are individually associated with acute rheumatic fever: evidence from New Zealand[J]. BMJ Glob Health, 2021, 6(12): e007038. PMID: 34887304. PMCID: PMC8663084. DOI: 10.1136/bmjgh-2021-007038.
14 Yu DL, Guo DC, Zheng YJ, et al. A review of penicillin binding protein and group A Streptococcus with reduced-β-lactam susceptibility[J]. Front Cell Infect Microbiol, 2023, 13: 1117160. PMID: 37065204. PMCID: PMC10102528. DOI: 10.3389/fcimb.2023.1117160.
15 Vannice KS, Ricaldi J, Nanduri S, et al. Streptococcus pyogenes pbp2x mutation confers reduced susceptibility to β-lactam antibiotics[J]. Clin Infect Dis, 2020, 71(1): 201-204. PMID: 31630171. PMCID: PMC7167332. DOI: 10.1093/cid/ciz1000.
16 Musser JM, Beres SB, Zhu L, et al. Reduced in vitro susceptibility of Streptococcus pyogenes to β-lactam antibiotics associated with mutations in the pbp2x gene is geographically widespread[J]. J Clin Microbiol, 2020, 58(4): 01919-01993. PMID: 31996443. PMCID: PMC7098749. DOI: 10.1128/JCM.01993-19.
17 Olsen RJ, Zhu L, Mangham RE, et al. A chimeric penicillin binding protein 2x significantly decreases in vitro beta-lactam susceptibility and increases in vivo fitness of Streptococcus pyogenes[J]. Am J Pathol, 2022, 192(10): 1397-1406. PMID: 35843262. PMCID: PMC9552024. DOI: 10.1016/j.ajpath.2022.06.011.
18 Southon SB, Beres SB, Kachroo P, et al. Population genomic molecular epidemiological study of macrolide-resistant Streptococcus pyogenes in Iceland, 1995 to 2016: identification of a large clonal population with a pbp2x mutation conferring reduced in vitro β-lactam susceptibility[J]. J Clin Microbiol, 2020, 58(9): e00638-20. PMID: 32522827. PMCID: PMC7448646. DOI: 10.1128/JCM.00638-20.
19 Chochua S, Metcalf B, Li Z, et al. Invasive group A streptococcal penicillin binding protein 2x variants associated with reduced susceptibility to β-lactam antibiotics in the United States, 2015-2021[J]. Antimicrob Agents Chemother, 2022, 66(9): e0080222. PMID: 35969070. PMCID: PMC9487518. DOI: 10.1128/aac.00802-22.
20 Clinical and Laboratory Standards Institute. M100 performance standards for antimicrobial susceptibility testing 33rd ed[EB/OL]. (2023-03-03)[2023-05-18]. https://clsi.org/media/tc4b1paf/m10033_samplepages-1.pdf.
21 The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters[EB/OL]. (2023-01-01)[2023-04-20]. http://www.eucast.org.
22 Martini CL, Coronado AZ, Melo MCN, et al. Cellular growth arrest and efflux pumps are associated with antibiotic persisters in Streptococcus pyogenes induced in biofilm-like environments[J]. Front Microbiol, 2021, 12: 716628. PMID: 34621249. PMCID: PMC8490960. DOI: 10.3389/fmicb.2021.716628.
23 Lenhard JR, Bulman ZP. Inoculum effect of β-lactam antibiotics[J]. J Antimicrob Chemother, 2019, 74(10): 2825-2843. PMID: 31170287. PMCID: PMC6753498. DOI: 10.1093/jac/dkz226.
24 Marum D, Manning L, Raby E. Revisiting the inoculum effect for Streptococcus pyogenes with a hollow fibre infection model[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(10): 2137-2144. PMID: 33948751. DOI: 10.1007/s10096-021-04262-x.
25 Bielaszewska M, Daniel O, Ny? O, et al. In vivo secretion of β-lactamase-carrying outer membrane vesicles as a mechanism of β-lactam therapy failure[J]. Membranes (Basel), 2021, 11(11): 806. PMID: 34832035. PMCID: PMC8625792. DOI: 10.3390/membranes11110806.
26 Geyrhofer L, Ruelens P, Farr AD, et al. Minimal surviving inoculum in collective antibiotic resistance[J]. mBio, 2023, 14(2): e0245622. PMID: 37022160. PMCID: PMC10128016. DOI: 10.1128/mbio.02456-22.
27 Galera-Laporta L, Garcia-Ojalvo J. Antithetic population response to antibiotics in a polybacterial community[J]. Sci Adv, 2020, 6(10): eaaz5108. PMID: 32181369. PMCID: PMC7060062. DOI: 10.1126/sciadv.aaz5108.
28 Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence[J]. Nat Rev Microbiol, 2019, 17(7): 441-448. PMID: 30980069. PMCID: PMC7136161. DOI: 10.1038/s41579-019-0196-3.
29 Vyas HKN, Proctor EJ, McArthur J, et al. Current understanding of group a streptococcal biofilms[J]. Curr Drug Targets, 2019, 20(9): 982-993. PMID: 30947646. PMCID: PMC6700754. DOI: 10.2174/1389450120666190405095712.
30 Vyas HKN, Indraratna AD, Everest-Dass A, et al. Assessing the role of pharyngeal cell surface glycans in group A Streptococcus biofilm formation[J]. Antibiotics (Basel), 2020, 9(11): 775. PMID: 33158121. PMCID: PMC7694240. DOI: 10.3390/antibiotics9110775.
31 Freiberg JA, Le Breton Y, Harro JM, et al. The arginine deiminase pathway impacts antibiotic tolerance during biofilm-mediated Streptococcus pyogenes infections[J]. mBio, 2020, 11(4): e00919-e00920. PMID: 32636245. PMCID: PMC7343988. DOI: 10.1128/mBio.00919-20.
32 Valderrama JA, Nizet V. Group A Streptococcus encounters with host macrophages[J]. Future Microbiol, 2018, 13(1): 119-134. PMID: 29226710. PMCID: PMC5771463. DOI: 10.2217/fmb-2017-0142.
33 Jiang QS, Zhou XD, Cheng L, et al. The adhesion and invasion mechanisms of Streptococci[J]. Curr Issues Mol Biol, 2019, 32: 521-560. PMID: 31166179. DOI: 10.21775/cimb.032.521.
34 Brook I. Treatment challenges of group a beta-hemolytic streptococcal pharyngo-tonsillitis[J]. Int Arch Otorhinolaryngol, 2017, 21(3): 286-296. PMID: 28680500. PMCID: PMC5495595. DOI: 10.1055/s-0036-1584294.
35 Kono M, Sakatani H, Kinoshita T, et al. Bactericidal effect of lascufloxacin on HEp-2 cell-internalized group A Streptococcus[J]. J Infect Chemother, 2023, 29(4): 401-406. PMID: 36681190. DOI: 10.1016/j.jiac.2023.01.008.
36 Lu SL, Omori H, Zhou Y, et al. VEGF-mediated augmentation of autophagic and lysosomal activity in endothelial cells defends against intracellular Streptococcus pyogenes[J]. mBio, 2022, 13(4): e0123322. PMID: 35862783. PMCID: PMC9426552. DOI: 10.1128/mbio.01233-22.
37 Centers for Disease Control and Prevention. Antibiotic prescribing and use[EB/OL]. (2017-02-01)[2023-12-06]. https://www.cdc.gov/antibiotic-use/clinicians/pediatric-treatment-rec.html.
PDF(623 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/