Research progress on brain functional near-infrared spectroscopy technology in the field of neonates

YANG Qian, LIU Yun-Feng

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (1) : 86-91.

PDF(644 KB)
HTML
PDF(644 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (1) : 86-91. DOI: 10.7499/j.issn.1008-8830.2309002
REVIEW

Research progress on brain functional near-infrared spectroscopy technology in the field of neonates

  • YANG Qian, LIU Yun-Feng
Author information +
History +

Abstract

Functional near infrared spectroscopy (fNIRS) is an emerging neuroimaging tool that reflects the activity and function of brain neurons by monitoring changes in brain oxygen metabolism based on the neurovascular coupling mechanism. It is non-invasive and convenient, especially suitable for monitoring neonatal brain function. This article provides a comprehensive review of research related to the developmental patterns of brain networks concerning language, music, and emotions in neonates using fNIRS. It also covers brain network imaging in neonatal care, resting-state brain network connectivity patterns, and characteristics of brain functional imaging in disease states of neonates using fNIRS.

Key words

Functional near-infrared spectroscopy technology / Brain network imaging / Resting state / Neuroscience / Neonate

Cite this article

Download Citations
YANG Qian, LIU Yun-Feng. Research progress on brain functional near-infrared spectroscopy technology in the field of neonates[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(1): 86-91 https://doi.org/10.7499/j.issn.1008-8830.2309002

References

1 J?bsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(4323): 1264-1267. PMID: 929199. DOI: 10.1126/science.929199.
2 Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1): 5-29. PMID: 30085354. PMCID: PMC6367070. DOI: 10.1111/nyas.13948.
3 Chance B, Zhuang Z, UnAh C, et al. Cognition-activated low-frequency modulation of light absorption in human brain[J]. Proc Natl Acad Sci U S A, 1993, 90(8): 3770-3774. PMID: 8475128. PMCID: PMC46383. DOI: 10.1073/pnas.90.8.3770.
4 Wolf M, Wolf U, Toronov V, et al. Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study[J]. Neuroimage, 2002, 16(3 Pt 1): 704-712. PMID: 12169254. DOI: 10.1006/nimg.2002.1128.
5 Schmaderer LF, Meyer M, Reer R, et al. What happens in the prefrontal cortex? Cognitive processing of novel and familiar stimuli in soccer: an exploratory fNIRS study[J]. Eur J Sport Sci, 2023: 23(12): 2389-2399. PMID: 37535067. DOI: 10.1080/17461391.2023.2238699.
6 Cui X, Bray S, Bryant DM, et al. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks[J]. Neuroimage, 2011, 54(4): 2808-2821. PMID: 21047559. PMCID: PMC3021967. DOI: 10.1016/j.neuroimage.2010.10.069.
7 Teie D. A comparative analysis of the universal elements of music and the fetal environment[J]. Front Psychol, 2016, 7: 1158. PMID: 27555828. PMCID: PMC4977359. DOI: 10.3389/fpsyg.2016.01158.
8 Taga G, Watanabe H, Homae F. Developmental changes in cortical sensory processing during wakefulness and sleep[J]. Neuroimage, 2018, 178: 519-530. PMID: 29860079. DOI: 10.1016/j.neuroimage.2018.05.075.
9 Uchida-Ota M, Arimitsu T, Tsuzuki D, et al. Maternal speech shapes the cerebral frontotemporal network in neonates: a hemodynamic functional connectivity study[J]. Dev Cogn Neurosci, 2019, 39: 100701. PMID: 31513977. PMCID: PMC6969365. DOI: 10.1016/j.dcn.2019.100701.
10 Wu YJ, Hou X, Peng C, et al. Rapid learning of a phonemic discrimination in the first hours of life[J]. Nat Hum Behav, 2022, 6(8): 1169-1179. PMID: 35654965. PMCID: PMC9391223. DOI: 10.1038/s41562-022-01355-1.
11 Forgács B, Tauzin T, Gergely G, et al. The newborn brain is sensitive to the communicative function of language[J]. Sci Rep, 2022, 12(1): 1220. PMID: 35075193. PMCID: PMC8786876. DOI: 10.1038/s41598-022-05122-0.
12 Martinez-Alvarez A, Benavides-Varela S, Lapillonne A, et al. Newborns discriminate utterance-level prosodic contours[J]. Dev Sci, 2023, 26(2): e13304. PMID: 35841609. DOI: 10.1111/desc.13304.
13 Giordano V, Alexopoulos J, Spagna A, et al. Accent discrimination abilities during the first days of life: an fNIRS study[J]. Brain Lang, 2021, 223: 105039. PMID: 34678622. DOI: 10.1016/j.bandl.2021.105039.
14 Ren H, Zou L, Wang L, et al. Evaluation of the short-term music therapy on brain functions of preterm infants using functional near-infrared spectroscopy[J]. Front Neurol, 2021, 12: 649340. PMID: 34650500. PMCID: PMC8505667. DOI: 10.3389/fneur.2021.649340.
15 Nallet C, Berent I, Werker JF, et al. The neonate brain's sensitivity to repetition-based structure: specific to speech?[J]. Dev Sci, 2023, 26(6): e13408. PMID: 37138509. DOI: 10.1111/desc.13408.
16 Zhang D, Chen Y, Hou X, et al. Near-infrared spectroscopy reveals neural perception of vocal emotions in human neonates[J]. Hum Brain Mapp, 2019, 40(8): 2434-2448. PMID: 30697881. PMCID: PMC6865553. DOI: 10.1002/hbm.24534.
17 张丹丹, 李宜伟, 于文汶, 等. 0~1岁婴儿情绪偏向的发展: 近红外成像研究[J]. 心理学报, 2023, 55(6): 920-929. DOI: 10.3724/SP.J.1041.2023.00920.
18 Zhang L, Yang L, Lei X, et al. Pain-related changes in crSO2 among premature infants undergoing PICC insertion[J]. J Matern Fetal Neonatal Med, 2023, 36(2): 2241976. PMID: 37527965. DOI: 10.1080/14767058.2023.2241976.
19 Yuan I, Nelson O, Barr GA, et al. Functional near-infrared spectroscopy to assess pain in neonatal circumcisions[J]. Paediatr Anaesth, 2022, 32(3): 404-412. PMID: 34747096. DOI: 10.1111/pan.14326.
20 Miguel HO, Gon?alves óF, Cruz S, et al. Infant brain response to affective and discriminative touch: a longitudinal study using fNIRS[J]. Soc Neurosci, 2019, 14(5): 571-582. PMID: 30352004. DOI: 10.1080/17470919.2018.1536000.
21 Bembich S, Castelpietra E, Cont G, et al. Cortical activation and oxygen perfusion in preterm newborns during kangaroo mother care: a pilot study[J]. Acta Paediatr, 2023, 112(5): 942-950. PMID: 36722000. DOI: 10.1111/apa.16695.
22 WHO Immediate KMC Study Group , Arya S, Naburi H, et al. Immediate "Kangaroo mother care" and survival of infants with low birth weight[J]. N Engl J Med, 2021, 384(21): 2028-2038. PMID: 34038632. PMCID: PMC8108485. DOI: 10.1056/NEJMoa2026486.
23 Karen T, Kleiser S, Ostojic D, et al. Cerebral hemodynamic responses in preterm-born neonates to visual stimulation: classification according to subgroups and analysis of frontotemporal-occipital functional connectivity[J]. Neurophotonics, 2019, 6(4): 045005. PMID: 31720310. PMCID: PMC6832016. DOI: 10.1117/1.NPh.6.4.045005.
24 Frie J, Bartocci M, Lagercrantz H, et al. Cortical responses to alien odors in newborns: an fNIRS study[J]. Cereb Cortex, 2018, 28(9): 3229-3240. PMID: 28981619. DOI: 10.1093/cercor/bhx194.
25 Frie J, Bartocci M, Kuhn P. Neonatal cortical perceptions of maternal breast odours: a fNIRS study[J]. Acta Paediatr, 2020, 109(7): 1330-1337. PMID: 31782829. DOI: 10.1111/apa.15114.
26 Kelsey CM, Farris K, Grossmann T. Variability in infants' functional brain network connectivity is associated with differences in affect and behavior[J]. Front Psychiatry, 2021, 12: 685754. PMID: 34177669. PMCID: PMC8220897. DOI: 10.3389/fpsyt.2021.685754.
27 Kelsey CM, Prescott S, McCulloch JA, et al. Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament[J]. Brain Behav Immun, 2021, 91: 472-486. PMID: 33157257. DOI: 10.1016/j.bbi.2020.11.003.
28 Lee CW, Blanco B, Dempsey L, et al. Sleep state modulates resting-state functional connectivity in neonates[J]. Front Neurosci, 2020, 14: 347. PMID: 32362811. PMCID: PMC7180180. DOI: 10.3389/fnins.2020.00347.
29 Arimitsu T, Shinohara N, Minagawa Y, et al. Differential age-dependent development of inter-area brain connectivity in term and preterm neonates[J]. Pediatr Res, 2022, 92(4): 1017-1025. PMID: 35094022. PMCID: PMC9586860. DOI: 10.1038/s41390-022-01939-7.
30 Bertachini ALL, Januario GC, Novi SL, et al. Hearing brain evaluated using near-infrared spectroscopy in congenital toxoplasmosis[J]. Sci Rep, 2021, 11(1): 10135. PMID: 33980948. PMCID: PMC8115034. DOI: 10.1038/s41598-021-89481-0.
31 Liu L, Geng Y, Cui Y, et al. Significance of the ability to differentiate emotional prosodies for the early diagnosis and prognostic prediction of mild hypoxic-ischemic encephalopathy in neonates[J]. Int J Dev Neurosci, 2021, 81(1): 51-59. PMID: 33118216. DOI: 10.1002/jdn.10074.
32 Zhang S, Peng C, Yang Y, et al. Resting-state brain networks in neonatal hypoxic-ischemic brain damage: a functional near-infrared spectroscopy study[J]. Neurophotonics, 2021, 8(2): 025007. PMID: 33997105. PMCID: PMC8119736. DOI: 10.1117/1.NPh.8.2.025007.
33 Kebaya LMN, Stubbs K, Lo M, et al. Three-dimensional cranial ultrasound and functional near-infrared spectroscopy for bedside monitoring of intraventricular hemorrhage in preterm neonates[J]. Sci Rep, 2023, 13(1): 3730. PMID: 36878952. PMCID: PMC9988970. DOI: 10.1038/s41598-023-30743-4.
PDF(644 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/