A cross-sectional study on the pathogen composition and antimicrobial resistance in neonates with sepsis in Hebei Province, China

Hebei Neonatal Sepsis Research Group

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (4) : 350-357.

PDF(788 KB)
PDF(788 KB)
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (4) : 350-357. DOI: 10.7499/j.issn.1008-8830.2309107
CLINICAL RESEARCH

A cross-sectional study on the pathogen composition and antimicrobial resistance in neonates with sepsis in Hebei Province, China

  • Hebei Neonatal Sepsis Research Group
Author information +
History +

Abstract

Objective To study the pathogen composition and antimicrobial resistance characteristics in neonates with sepsis in the Hebei area, providing a basis for optimizing the management strategies for neonatal sepsis in the region. Methods The medical data of neonates with sepsis confirmed by blood culture from 23 hospitals in Hebei Province were collected prospectively from November 1, 2021 to December 31, 2022. The pathogen composition and antimicrobial resistance characteristics were analyzed in early-onset sepsis (EOS), community-acquired late-onset sepsis (CALOS), and hospital-acquired late-onset sepsis (HALOS) cases. Results A total of 289 neonates were included, accounting for 292 infection episodes, with 117 (40.1%) EOS, 95 (32.5%) CALOS, and 80 (27.4%) HALOS cases. A total of 294 pathogens were isolated, with 118 (40.1%) from the EOS group, where Escherichia coli (39 strains, 33.0%) and coagulase-negative staphylococci (13 strains, 11.0%) were the most common. In the CALOS group, 95 pathogens were isolated (32.3%), with Escherichia coli (35 strains, 36.8%) and group B Streptococcus (14 strains, 14.7%) being predominant. The HALOS group yielded 81 isolates (27.6%), with Klebsiella pneumoniae (24 strains, 29.6%) and Escherichia coli (21 strains, 25.9%) as the most frequent. Coagulase-negative staphylococci showed over 80% resistance to penicillin antibiotics. Escherichia coli and Klebsiella pneumoniae showed a resistance rate of 2.2% to 75.0% to common β-lactam antibiotics. The resistance rates of predominant Gram-negative bacteria in the HALOS group to common β-lactam antibiotics were higher than those in the CALOS group. Conclusions In the Hebei region, Escherichia coli is the most common pathogen in both EOS and LOS. There are differences in the composition and antimicrobial resistance of pathogens among different types of neonatal sepsis. The choice of empirical antimicrobial drugs should be based on the latest surveillance data from the region.

Key words

Sepsis / Pathogen / Drug resistance / Neonate

Cite this article

Download Citations
Hebei Neonatal Sepsis Research Group. A cross-sectional study on the pathogen composition and antimicrobial resistance in neonates with sepsis in Hebei Province, China[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(4): 350-357 https://doi.org/10.7499/j.issn.1008-8830.2309107

References

1 Lawn JE, Blencowe H, Oza S, et al. Every newborn: progress, priorities, and potential beyond survival[J]. Lancet, 2014, 384(9938): 189-205. PMID: 24853593. DOI: 10.1016/S0140-6736(14)60496-7.
2 Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis[J]. Lancet, 2017, 390(10104): 1770-1780. PMID: 28434651. DOI: 10.1016/S0140-6736(17)31002-4.
3 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257. PMID: 30934196. DOI: 10.3760/cma.j.issn.0578-1310.2019.04.005.
4 Stoll BJ, Gordon T, Korones SB, et al. Early-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network[J]. J Pediatr, 1996, 129(1): 72-80. PMID: 8757565. DOI: 10.1016/s0022-3476(96)70192-0.
5 Stoll BJ, Hansen N, Fanaroff AA, et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants[J]. N Engl J Med, 2002, 347(4): 240-247. PMID: 12140299. DOI: 10.1056/NEJMoa012657.
6 Puopolo KM, Lynfield R, Cummings JJ, et al. Management of infants at risk for group B streptococcal disease[J]. Pediatrics, 2019, 144(2): e20191881. PMID: 31285392. DOI: 10.1542/peds.2019-1881.
7 俞元强, 董青艺, 胡劲涛, 等. 新生儿败血症病原菌及耐药性10年回顾性分析[J]. 中国当代儿科杂志, 2022, 24(10): 1111-1116. PMID: 36305111. PMCID: PMC9627997. DOI: 10.7499/j.issn.1008-8830.2204162.
8 Chaurasia S, Sivanandan S, Agarwal R, et al. Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance[J]. BMJ, 2019, 364: k5314. PMID: 30670451. PMCID: PMC6340339. DOI: 10.1136/bmj.k5314.
9 Mashau RC, Meiring ST, Dramowski A, et al. Culture-confirmed neonatal bloodstream infections and meningitis in South Africa, 2014-19: a cross-sectional study[J]. Lancet Glob Health, 2022, 10(8): e1170-e1178. PMID: 35839815. PMCID: PMC9296659. DOI: 10.1016/S2214-109X(22)00246-7.
10 全国细菌耐药监测网. 2020年全国细菌耐药监测报告(简要版)[EB/OL]. (2021-11-17)[2023-06-05]. https://www.carss.cn/Report/Details/808.
11 中华人民共和国国家卫生和计划生育委员会. 临床微生物实验室血培养操作规范: WS/T 503-2017[S]. 北京: 中国标准出版社, 2017.
12 Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing 30th edition: M100[S]. Malvern, PA, USA: CLSI, 2020.
13 中华人民共和国国家卫生健康委员会. 关于印发医院感染诊断标准(试行)的通知[EB/OL]. (2001-11-07) [2023-06-08]. http://www.nhc.gov.cn/wjw/gfxwj/201304/37cad8d95582456d8907ad04a5f3bd4c.shtml.
14 Liu J, Fang Z, Yu Y, et al. Pathogens distribution and antimicrobial resistance in bloodstream infections in twenty-five neonatal intensive care units in China, 2017-2019[J]. Antimicrob Resist Infect Control, 2021, 10(1): 121. PMID: 34399840. PMCID: PMC8365905. DOI: 10.1186/s13756-021-00989-6.
15 Giannoni E, Agyeman PKA, Stocker M, et al. Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: a prospective population-based cohort study[J]. J Pediatr, 2018, 201: 106-114.e4. PMID: 30054165. DOI: 10.1016/j.jpeds.2018.05.048.
16 Jiang S, Hong L, Gai J, et al. Early-onset sepsis among preterm neonates in China, 2015 to 2018[J]. Pediatr Infect Dis J, 2019, 38(12): 1236-1241. PMID: 31738341. DOI: 10.1097/INF.0000000000002492.
17 Ding Y, Wang Y, Hsia Y, et al. Systematic review and meta-analyses of incidence for group B Streptococcus disease in infants and antimicrobial resistance, China[J]. Emerg Infect Dis, 2020, 26(11): 2651-2659. PMID: 33079042. PMCID: PMC7588546. DOI: 10.3201/eid2611.181414.
18 Russell NJ, Seale AC, O'Driscoll M, et al. Maternal colonization with group B Streptococcus and serotype distribution worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): S100-S111. PMID: 29117327. PMCID: PMC5848259. DOI: 10.1093/cid/cix658.
19 Tessema B, Lippmann N, Knüpfer M, et al. Antibiotic resistance patterns of bacterial isolates from neonatal sepsis patients at university hospital of Leipzig, Germany[J]. Antibiotics (Basel), 2021, 10(3): 323. PMID: 33808878. PMCID: PMC8003699. DOI: 10.3390/antibiotics10030323.
20 Stoll BJ, Hansen NI, Sánchez PJ, et al. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues[J]. Pediatrics, 2011, 127(5): 817-826. PMID: 21518717. PMCID: PMC3081183. DOI: 10.1542/peds.2010-2217.
21 Cailes B, Kortsalioudaki C, Buttery J, et al. Epidemiology of UK neonatal infections: the neonIN infection surveillance network[J]. Arch Dis Child Fetal Neonatal Ed, 2018, 103(6): F547-F553. PMID: 29208666. DOI: 10.1136/archdischild-2017-313203.
22 Calley JL, Warris A. Recognition and diagnosis of invasive fungal infections in neonates[J]. J Infect, 2017, 74(Suppl 1): S108-S113. PMID: 28646949. DOI: 10.1016/S0163-4453(17)30200-1.
23 Flannery DD, Akinboyo IC, Mukhopadhyay S, et al. Antibiotic susceptibility of Escherichia coli among infants admitted to neonatal intensive care units across the US from 2009 to 2017[J]. JAMA Pediatr, 2021, 175(2): 168-175. PMID: 33165599. PMCID: PMC7653538. DOI: 10.1001/jamapediatrics.2020.4719.
24 Gao K, Fu J, Guan X, et al. Incidence, bacterial profiles, and antimicrobial resistance of culture-proven neonatal sepsis in South China[J]. Infect Drug Resist, 2019, 12: 3797-3805. PMID: 31819560. PMCID: PMC6899077. DOI: 10.2147/IDR.S223597.
25 Cotten CM, Taylor S, Stoll B, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants[J]. Pediatrics, 2009, 123(1): 58-66. PMID: 19117861. PMCID: PMC2760222. DOI: 10.1542/peds.2007-3423.
26 Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance[J]. FEMS Microbiol Rev, 2017, 41(3): 252-275. PMID: 28521338. DOI: 10.1093/femsre/fux013.
27 Mukherjee S, Mitra S, Dutta S, et al. Neonatal sepsis: the impact of carbapenem-resistant and hypervirulent Klebsiella pneumoniae[J]. Front Med (Lausanne), 2021, 8: 634349. PMID: 34179032. PMCID: PMC8225938. DOI: 10.3389/fmed.2021.634349.
PDF(788 KB)

Accesses

Citation

Detail

Sections
Recommended

/