Objective To investigate the incidence rate, clinical characteristics, and prognosis of neonatal stroke in Shenzhen, China. Methods Led by Shenzhen Children's Hospital, the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022. The incidence, clinical characteristics, treatment, and prognosis of neonatal stroke in Shenzhen were analyzed. Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137, 1/6 060, and 1/7 704, respectively. Ischemic stroke accounted for 75% (27/36); boys accounted for 64% (23/36). Among the 36 neonates, 31 (86%) had disease onset within 3 days after birth, and 19 (53%) had convulsion as the initial presentation. Cerebral MRI showed that 22 neonates (61%) had left cerebral infarction and 13 (36%) had basal ganglia infarction. Magnetic resonance angiography was performed for 12 neonates, among whom 9 (75%) had involvement of the middle cerebral artery. Electroencephalography was performed for 29 neonates, with sharp waves in 21 neonates (72%) and seizures in 10 neonates (34%). Symptomatic/supportive treatment varied across different hospitals. Neonatal Behavioral Neurological Assessment was performed for 12 neonates (33%, 12/36), with a mean score of (32±4) points. The prognosis of 27 neonates was followed up to around 12 months of age, with 44% (12/27) of the neonates having a good prognosis. Conclusions Ischemic stroke is the main type of neonatal stroke, often with convulsions as the initial presentation, involvement of the middle cerebral artery, sharp waves on electroencephalography, and a relatively low neurodevelopment score. Symptomatic/supportive treatment is the main treatment method, and some neonates tend to have a poor prognosis.
Key words
Stroke /
Multicenter study /
Neonate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
1 Dunbar M, Kirton A. Perinatal stroke[J]. Semin Pediatr Neurol, 2019, 32: 100767. PMID: 31813521. DOI: 10.1016/j.spen.2019.08.003.
2 Nelson KB. Perinatal ischemic stroke[J]. Stroke, 2007, 38(2 Suppl): 742-745. PMID: 17261729. DOI: 10.1161/01.STR.0000247921.97794.5e.
3 Dunbar M, Mineyko A, Hill M, et al. Population based birth prevalence of disease-specific perinatal stroke[J]. Pediatrics, 2020, 146(5): e2020013201. PMID: 33115795. DOI: 10.1542/peds.2020-013201.
4 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 5版. 北京: 人民卫生出版社, 2019.
5 易受蓉, 罗学荣, 杨志伟, 等. 贝利婴幼儿发展量表在我国的修订(城市版)[J]. 中国临床心理学杂志, 1993, 1(2): 71-75.
6 中华医学会儿科学分会新生儿学组, 中华儿科杂志编辑委员会. 新生儿惊厥临床管理专家共识(2022版)[J]. 中华儿科杂志, 2022, 60(11): 1127-1133. PMID: 36319145. DOI: 10.3760/cma.j.cn112140-20220531-00498.
7 Xia Q, Yang Z, Xie Y, et al. The incidence and characteristics of perinatal stroke in Beijing: a multicenter study[J]. Front Public Health, 2022, 10: 783153. PMID: 35400054. PMCID: PMC8987304. DOI: 10.3389/fpubh.2022.783153.
8 Li C, Miao JK, Xu Y, et al. Prenatal, perinatal and neonatal risk factors for perinatal arterial ischaemic stroke: a systematic review and meta-analysis[J]. Eur J Neurol, 2017, 24(8): 1006-1015. PMID: 28646492. DOI: 10.1111/ene.13337.
9 柯开富. 孕产妇脑静脉及静脉窦血栓形成的诊治[J]. 中国实用妇科与产科杂志, 2018, 34(7): 729-733. DOI: 10.19538/j.fk2018070107.
10 Herz J, Bendix I, Felderhoff-Müser U. Peripheral immune cells and perinatal brain injury: a double-edged sword?[J]. Pediatr Res, 2022, 91(2): 392-403. PMID: 34750522. PMCID: PMC8816729. DOI: 10.1038/s41390-021-01818-7.
11 Sorg AL, Von Kries R, Klemme M, et al. Incidence and risk factors of cerebral sinovenous thrombosis in infants[J]. Dev Med Child Neurol, 2021, 63(6): 697-704. PMID: 33506500. DOI: 10.1111/dmcn.14816.
12 Fluss J, Garcia-Tarodo S, Granier M, et al. Perinatal arterial ischemic stroke related to carotid artery occlusion[J]. Eur J Paediatr Neurol, 2016, 20(4): 639-648. PMID: 27025300. DOI: 10.1016/j.ejpn.2016.03.003.
13 Leon RL, Kalvacherla V, Andrews MM, et al. Placental pathologic lesions associated with stroke in term neonates[J]. Front Endocrinol (Lausanne), 2022, 13: 920680. PMID: 36157451. PMCID: PMC9492924. DOI: 10.3389/fendo.2022.920680.
14 Fluss J, Dinomais M, Chabrier S. Perinatal stroke syndromes: similarities and diversities in aetiology, outcome and management[J]. Eur J Paediatr Neurol, 2019, 23(3): 368-383. PMID: 30879961. DOI: 10.1016/j.ejpn.2019.02.013.
15 Chabrier S, Sébire G. Perinatal inflammation and placental programming of neonatal stroke[J]. Dev Med Child Neurol, 2020, 62(4): 413-414. PMID: 31591709. DOI: 10.1111/dmcn.14375.
16 Ferriero DM, Fullerton HJ, Bernard TJ, et al. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association[J]. Stroke, 2019, 50(3): e51-e96. PMID: 30686119. DOI: 10.1161/STR.0000000000000183.
17 Wagenaar N, de Theije CGM, de Vries LS, et al. Promoting neuroregeneration after perinatal arterial ischemic stroke: neurotrophic factors and mesenchymal stem cells[J]. Pediatr Res, 2018, 83(1-2): 372-384. PMID: 28949952. DOI: 10.1038/pr.2017.243.
18 Bruschettini M, Badura A, Romantsik O. Stem cell-based interventions for the treatment of stroke in newborn infants[J]. Cochrane Database Syst Rev, 2023, 11(11): CD015582. PMID: 37994736. PMCID: PMC10666199. DOI: 10.1002/14651858.CD015582.pub2.
19 Ruddy RM, Adams KV, Morshead CM. Age- and sex-dependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke[J]. Sci Adv, 2019, 5(9): eaax1912. PMID: 31535024. PMCID: PMC6739114. DOI: 10.1126/sciadv.aax1912.