Recent research on gene polymorphisms and genetic susceptibility of neonatal sepsis

GAO Jing, SHU Jian-Bo, LIU Yang

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (8) : 879-886.

PDF(593 KB)
PDF(593 KB)
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (8) : 879-886. DOI: 10.7499/j.issn.1008-8830.2401065
REVIEW

Recent research on gene polymorphisms and genetic susceptibility of neonatal sepsis

  • GAO Jing, SHU Jian-Bo, LIU Yang
Author information +
History +

Abstract

Neonatal sepsis is a common and severe infectious disease with a high mortality rate. Its pathogenesis is complex, lacks specific manifestations, and has a low positive culture rate, making early diagnosis and personalized treatment still a challenge for clinicians. Epidemiological studies on twins have shown that genetic factors are associated with neonatal sepsis. Gene polymorphisms are closely related to susceptibility, disease development, and prognosis. This article provides a review of gene polymorphisms related to neonatal sepsis, including interleukins, tumor necrosis factor, Toll-like receptors, NOD-like receptors, CD14, triggering receptor expressed on myeloid cells-1, mannose-binding lectin, and other immune proteins, aiming to promote precision medicine for this disease.

Key words

Sepsis / Genetic susceptibility / Gene polymorphism / Single nucleotide polymorphism / Neonate

Cite this article

Download Citations
GAO Jing, SHU Jian-Bo, LIU Yang. Recent research on gene polymorphisms and genetic susceptibility of neonatal sepsis[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(8): 879-886 https://doi.org/10.7499/j.issn.1008-8830.2401065

References

1 Fleischmann C, Reichert F, Cassini A, et al. Global incidence and mortality of neonatal sepsis: a systematic review and meta-analysis[J]. Arch Dis Child, 2021, 106(8): 745-752. PMID: 33483376. PMCID: PMC8311109. DOI: 10.1136/archdischild-2020-320217.
2 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257. PMID: 30934196. DOI: 10.3760/cma.j.issn.0578-1310.2019.04.005.
3 Dai W, Zhou W. A narrative review of precision medicine in neonatal sepsis: genetic and epigenetic factors associated with disease susceptibility[J]. Transl Pediatr, 2023, 12(4): 749-767. PMID: 37181024. PMCID: PMC10167399. DOI: 10.21037/tp-22-369.
4 Borghesi A, Marzollo A, Michev A, et al. Susceptibility to infection in early life: a growing role for human genetics[J]. Hum Genet, 2020, 139(6-7): 733-743. PMID: 31932884. DOI: 10.1007/s00439-019-02109-2.
5 Mantovani A, Dinarello CA, Molgora M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity[J]. Immunity, 2019, 50(4): 778-795. PMID: 30995499. PMCID: PMC7174020. DOI: 10.1016/j.immuni.2019.03.012.
6 Fajgenbaum DC, June CH. Cytokine storm[J]. N Engl J Med, 2020, 383(23): 2255-2273. PMID: 33264547. PMCID: PMC7727315. DOI: 10.1056/NEJMra2026131.
7 Behzadi P, Sameer AS, Nissar S, et al. The interleukin-1 (IL-1) superfamily cytokines and their single nucleotide polymorphisms (SNPs)[J]. J Immunol Res, 2022, 2022: 2054431. PMID: 35378905. PMCID: PMC8976653. DOI: 10.1155/2022/2054431.
8 Varljen T, Sekulovic G, Rakic O, et al. Genetic variant rs16944 in IL1B gene is a risk factor for early-onset sepsis susceptibility and outcome in preterm infants[J]. Inflamm Res, 2020, 69(2): 155-157. PMID: 31863173. DOI: 10.1007/s00011-019-01301-4.
9 Rong H, He X, Wang L, et al. Association between IL1B polymorphisms and the risk of rheumatoid arthritis[J]. Int Immunopharmacol, 2020, 83: 106401. PMID: 32240943. DOI: 10.1016/j.intimp.2020.106401.
10 Allam G, Alsulaimani AA, Alzaharani AK, et al. Neonatal infections in Saudi Arabia: association with cytokine gene polymorphisms[J]. Cent Eur J Immunol, 2015, 40(1): 68-77. PMID: 26155186. PMCID: PMC4472542. DOI: 10.5114/ceji.2015.50836.
11 Mustarim M, Yanwirasti Y, Jamsari J, et al. Association of gene polymorphism of bactericidal permeability increasing protein rs4358188, cluster of differentiation 14 rs2569190, interleukin 1β rs1143643 and matrix metalloproteinase-16 rs2664349 with neonatal sepsis[J]. Open Access Maced J Med Sci, 2019, 7(17): 2728-2733. PMID: 31844428. PMCID: PMC6901854. DOI: 10.3889/oamjms.2019.740.
12 Esposito S, Zampiero A, Pugni L, et al. Genetic polymorphisms and sepsis in premature neonates[J]. PLoS One, 2014, 9(7): e101248. PMID: 25000179. PMCID: PMC4085055. DOI: 10.1371/journal.pone.0101248.
13 Abu-Maziad A, Schaa K, Bell EF, et al. Role of polymorphic variants as genetic modulators of infection in neonatal sepsis[J]. Pediatr Res, 2010, 68(4): 323-329. PMID: 20463618. PMCID: PMC2940937. DOI: 10.1203/PDR.0b013e3181e6a068.
14 赵晓芬, 周星, 张焱, 等. IL-1β基因单核苷酸多态性与足月新生儿败血症的相关性研究[J]. 中国儿童保健杂志, 2020, 28(1): 65-69. DOI: 10.11852/zgetbjzz2019-0513.
15 Xu J, Nú?ez G. The NLRP3 inflammasome: activation and regulation[J]. Trends Biochem Sci, 2023, 48(4): 331-344. PMID: 36336552. PMCID: PMC10023278. DOI: 10.1016/j.tibs.2022.10.002.
16 冯一川, 陈宁, 任冲, 等. 血乳酸和血清CRP、IL-6在新生儿败血症中的表达意义[J]. 中国实用医刊, 2021, 48(23): 5-8. DOI: 10.3760/cma.j.cn115689-20210807-02586.
17 Harding D, Dhamrait S, Millar A, et al. Is interleukin-6 -174 genotype associated with the development of septicemia in preterm infants?[J]. Pediatrics, 2003, 112(4): 800-803. PMID: 14523169. DOI: 10.1542/peds.112.4.800.
18 Ahrens P, Kattner E, K?hler B, et al. Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants[J]. Pediatr Res, 2004, 55(4): 652-656. PMID: 14739370. DOI: 10.1203/01.PDR.0000112100.61253.85.
19 Baier RJ, Loggins J, Yanamandra K. IL-10, IL-6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight infants[J]. BMC Med, 2006, 4: 10. PMID: 16611358. PMCID: PMC1513390. DOI: 10.1186/1741-7015-4-10.
20 Reiman M, Kujari H, Ekholm E, et al. Interleukin-6 polymorphism is associated with chorioamnionitis and neonatal infections in preterm infants[J]. J Pediatr, 2008, 153(1): 19-24. PMID: 18571528. DOI: 10.1016/j.jpeds.2008.02.009.
21 Williams PT. Quantile-dependent expressivity of serum interleukin-6 concentrations as a possible explanation of gene-disease interactions, gene-environment interactions, and pharmacogenetic effects[J]. Inflammation, 2022, 45(3): 1059-1075. PMID: 34993731. PMCID: PMC9106828. DOI: 10.1007/s10753-021-01601-0.
22 Matsushima K, Yang D, Oppenheim JJ. Interleukin-8: an evolving chemokine[J]. Cytokine, 2022, 153: 155828. PMID: 35247648. DOI: 10.1016/j.cyto.2022.155828.
23 赵晓芬, 朱双燕, 胡浩, 等. IL-8基因rs4073位点多态性与新生儿败血症易感性的关系[J]. 中国当代儿科杂志, 2020, 22(4): 323-327. PMID: 32312369. PMCID: PMC7389694. DOI: 10.7499/j.issn.1008-8830.1910068.
24 Yeung ST, Ovando LJ, Russo AJ, et al. CD169+ macrophage intrinsic IL-10 production regulates immune homeostasis during sepsis[J]. Cell Rep, 2023, 42(3): 112171. PMID: 36867536. PMCID: PMC10123955. DOI: 10.1016/j.celrep.2023.112171.
25 赵晓芬, 杨米凤, 赵朋娜, 等. IL-10基因多态性与足月新生儿败血症易感性的相关性[J]. 医学临床研究, 2023, 40(3): 321-324. DOI: 10.3969/j.issn.1671-7171.2023.03.001.
26 刘峰, 张靖宇, 任红玲. PCT、TNF-α、CRP、sTNFR-Ⅱ在新生儿败血症中的表达水平及其临床意义[J]. 中国实用医刊, 2021, 48(15): 89-92. DOI: 10.3760/cma.j.cn115689-20210410-01339.
27 Varljen T, Rakic O, Sekulovic G, et al. Association between tumor necrosis factor-α promoter -308 G/A polymorphism and early onset sepsis in preterm infants[J]. Tohoku J Exp Med, 2019, 247(4): 259-264. PMID: 31006736. DOI: 10.1620/tjem.247.259.
28 Hedberg CL, Adcock K, Martin J, et al. Tumor necrosis factor alpha-308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants[J]. Pediatr Infect Dis J, 2004, 23(5): 424-428. PMID: 15131465. DOI: 10.1097/01.inf.0000122607.73324.20.
29 Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13: 812774. PMID: 35309296. PMCID: PMC8927970. DOI: 10.3389/fimmu.2022.812774.
30 Gródecka-Szwajkiewicz D, Ulańczyk Z, Zagrodnik E, et al. Comparative analysis of global gene expression and complement components levels in umbilical cord blood from preterm and term neonates: implications for significant downregulation of immune response pathways related to prematurity[J]. Int J Med Sci, 2020, 17(12): 1840-1853. PMID: 32714087. PMCID: PMC7378668. DOI: 10.7150/ijms.46339.
31 Zhang Y, Liu J, Wang C, et al. Toll-like receptors gene polymorphisms in autoimmune disease[J]. Front Immunol, 2021, 12: 672346. PMID: 33981318. PMCID: PMC8107678. DOI: 10.3389/fimmu.2021.672346.
32 Behairy MY, Abdelrahman AA, Toraih EA, et al. Investigation of TLR2 and TLR4 polymorphisms and sepsis susceptibility: computational and experimental approaches[J]. Int J Mol Sci, 2022, 23(18): 10982. PMID: 36142893. PMCID: PMC9504743. DOI: 10.3390/ijms231810982.
33 Mhmoud NA. Association of toll-like receptors 1, 2, 4, 6, 8, 9 and 10 genes polymorphisms and susceptibility to pulmonary tuberculosis in sudanese patients[J]. Immunotargets Ther, 2023, 12: 47-75. PMID: 37051380. PMCID: PMC10085002. DOI: 10.2147/ITT.S404915.
34 Aluri J, Cooper MA, Schuettpelz LG. Toll-like receptor signaling in the establishment and function of the immune system[J]. Cells, 2021, 10(6): 1374. PMID: 34199501. PMCID: PMC8228919. DOI: 10.3390/cells10061374.
35 徐征, 杜晨, 高宇, 等. TLR2、IRF-5基因多态性对新生儿败血症易感性的影响及交互作用[J]. 中国医师杂志, 2023, 25(7): 1025-1029. DOI: 10.3760/cma.j.cn431274-20220609-00547.
36 王晓蕾, 章乐, 李雅雯, 等. Toll样受体2及5基因单核苷酸多态性与新生儿败血症易感性的研究[J]. 中国当代儿科杂志, 2015, 17(12): 1316-1321. PMID: 26695672. DOI: 10.7499/j.issn.1008-8830.2015.12.012.
37 Sampath V, Mulrooney NP, Garland JS, et al. Toll-like receptor genetic variants are associated with gram-negative infections in VLBW infants[J]. J Perinatol, 2013, 33(10): 772-777. PMID: 23867959. PMCID: PMC4465440. DOI: 10.1038/jp.2013.80.
38 程雪莲. TLR4、SAA水平在新生儿败血症中的变化及与心肌、肝功能受损的关系[J]. 实验与检验医学, 2019, 37(5): 862-864. DOI: 10.3969/j.issn.1674-1129.2019.05.028.
39 Sljivancanin Jakovljevic T, Martic J, Jacimovic J, et al. Association between innate immunity gene polymorphisms and neonatal sepsis development: a systematic review and meta-analysis[J]. World J Pediatr, 2022, 18(10): 654-670. PMID: 35666457. DOI: 10.1007/s12519-022-00569-7.
40 Pinheiro A, águeda-Pinto A, Melo-Ferreira J, et al. Analysis of substitution rates showed that TLR5 is evolving at different rates among mammalian groups[J]. BMC Evol Biol, 2019, 19(1): 221. PMID: 31791244. PMCID: PMC6889247. DOI: 10.1186/s12862-019-1547-4.
41 Kienes I, Johnston EL, Bitto NJ, et al. Bacterial subversion of NLR-mediated immune responses[J]. Front Immunol, 2022, 13: 930882. PMID: 35967403. PMCID: PMC9367220. DOI: 10.3389/fimmu.2022.930882.
42 Sampath V, Mulrooney N, Patel AL, et al. A potential role for the NOD1 variant (rs6958571) in gram-positive blood stream infection in ELBW infants[J]. Neonatology, 2017, 112(4): 354-358. PMID: 28768269. DOI: 10.1159/000477433.
43 Martin SL, Desai S, Nanavati R, et al. Innate immune gene polymorphisms and their association with neonatal sepsis[J]. Infect Genet Evol, 2018, 62: 205-210. PMID: 29715526. DOI: 10.1016/j.meegid.2018.04.037.
44 Zhang AQ, Yue CL, Gu W, et al. Association between CD14 promoter-159C/T polymorphism and the risk of sepsis and mortality: a systematic review and meta-analysis[J]. PLoS One, 2013, 8(8): e71237. PMID: 23990939. PMCID: PMC3747171. DOI: 10.1371/journal.pone.0071237.
45 Siskind S, Brenner M, Wang P. TREM-1 modulation strategies for sepsis[J]. Front Immunol, 2022, 13: 907387. PMID: 35784361. PMCID: PMC9240770. DOI: 10.3389/fimmu.2022.907387.
46 马丽, 董良, 游志坚, 等. 槲皮素抑制TREM-1激活巨噬细胞炎症反应及减轻LPS诱导小鼠急性肺损伤的研究[J]. 中国医师杂志, 2022, 24(2): 206-211. DOI: 10.3760/cma.j.cn431274-20210918-00999.
47 Xiao L, Que S, Mu L, et al. The relationship between vitamin D receptor gene and TREM-1 gene polymorphisms and the susceptibility and prognosis of neonatal sepsis[J]. J Clin Lab Anal, 2022, 36(5): e24405. PMID: 35358332. PMCID: PMC9102495. DOI: 10.1002/jcla.24405.
48 王文英, 李艳阳, 王莹莹. 新生儿败血症血清PCT、sTREM-1的表达及其与炎症反应相关分析[J]. 实验与检验医学, 2021, 39(4): 968-970. DOI: 10.3969/j.issn.1674-1129.2021.04.063.
49 Ma J, Xu R, Xie Y, et al. The association between mannose binding lectin gene polymorphisms and the risk of neonatal sepsis: an updated meta-analysis[J]. Heliyon, 2023, 9(4): e14905. PMID: 37082630. PMCID: PMC10112022. DOI: 10.1016/j.heliyon.2023.e14905.
50 Hartz A, Pagel J, Humberg A, et al. The association of mannose-binding lectin 2 polymorphisms with outcome in very low birth weight infants[J]. PLoS One, 2017, 12(5): e0178032. PMID: 28558032. PMCID: PMC5448758. DOI: 10.1371/journal.pone.0178032.
51 Dogan P, Ozkan H, Koksal N, et al. Mannose-binding lectin gene polymorphism and its effect on short term outcomes in preterm infants[J]. J Pediatr (Rio J), 2020, 96(4): 520-526. PMID: 31029683. PMCID: PMC9432184. DOI: 10.1016/j.jped.2019.03.001.
52 ?zkan H, K?ksal N, ?etinkaya M, et al. Serum mannose-binding lectin (MBL) gene polymorphism and low MBL levels are associated with neonatal sepsis and pneumonia[J]. J Perinatol, 2012, 32(3): 210-217. PMID: 21681178. DOI: 10.1038/jp.2011.79.
53 Koroglu OA, Onay H, Erdemir G, et al. Mannose-binding lectin gene polymorphism and early neonatal outcome in preterm infants[J]. Neonatology, 2010, 98(4): 305-312. PMID: 20453525. DOI: 10.1159/000291487.
54 Xue H, Xue X, Yang C, et al. Low serum mannose binding lectin (MBL) levels and -221 YX genotype of MBL2 gene are susceptible to neonatal sepsis in the Chinese Han population[J]. Iran J Pediatr, 2017, 27(3): e9448. DOI: 10.5812/ijp.9448.
55 Ederer KU, Holzinger JM, Maier KT, et al. A polymorphism of bactericidal/permeability-increasing protein affects its neutralization efficiency towards lipopolysaccharide[J]. Int J Mol Sci, 2022, 23(3): 1324. PMID: 35163248. PMCID: PMC8836039. DOI: 10.3390/ijms23031324.
56 Theprungsirikul J, Skopelja-Gardner S, Rigby WFC. Killing three birds with one BPI: bactericidal, opsonic, and anti-inflammatory functions[J]. J Transl Autoimmun, 2021, 4: 100105. PMID: 34142075. PMCID: PMC8187252. DOI: 10.1016/j.jtauto.2021.100105.
57 de Almeida LGN, Thode H, Eslambolchi Y, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology[J]. Pharmacol Rev, 2022, 74(3): 712-768. PMID: 35738680. DOI: 10.1124/pharmrev.121.000349.
58 He J, Qin M, Chen Y, et al. Epigenetic regulation of matrix metalloproteinases in inflammatory diseases: a narrative review[J]. Cell Biosci, 2020, 10: 86. PMID: 32695308. PMCID: PMC7368751. DOI: 10.1186/s13578-020-00451-x.
59 Xiao D, Zhang X, Ying J, et al. Association between vitamin D status and sepsis in children: a meta-analysis of observational studies[J]. Clin Nutr, 2020, 39(6): 1735-1741. PMID: 31495735. DOI: 10.1016/j.clnu.2019.08.010.
60 刘晓丽, 丁亚星, 刘晓方. 新生儿早发型败血症血清25(OH)D与免疫球蛋白水平的变化[J]. 医学理论与实践, 2020, 33(6): 878-880. DOI: 10.19381/j.issn.1001-7585.2020.06.007.
61 Tayel SI, Soliman SE, Elsayed HM. Vitamin D deficiency and vitamin D receptor variants in mothers and their neonates are risk factors for neonatal sepsis[J]. Steroids, 2018, 134: 37-42. PMID: 29530503. DOI: 10.1016/j.steroids.2018.03.003.
PDF(593 KB)

Accesses

Citation

Detail

Sections
Recommended

/