Amplitude-integrated electroencephalography monitoring results of hospitalized neonates in plateau areas

ZHAO Xiao-Fen, CHENG Guo-Qiang, ZHAO Peng-Na, ZHAO Mei, ZHU Shuang-Yan, LI Yang-Fang, ZHOU Wen-Hao

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (8) : 817-822.

PDF(551 KB)
PDF(551 KB)
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (8) : 817-822. DOI: 10.7499/j.issn.1008-8830.2402078
CLINICAL RESEARCH

Amplitude-integrated electroencephalography monitoring results of hospitalized neonates in plateau areas

  • ZHAO Xiao-Fen, CHENG Guo-Qiang, ZHAO Peng-Na, ZHAO Mei, ZHU Shuang-Yan, LI Yang-Fang, ZHOU Wen-Hao
Author information +
History +

Abstract

Objective To investigate the amplitude-integrated electroencephalography (aEEG) monitoring results of hospitalized neonates in plateau areas. Methods A retrospective analysis was conducted on 5 945 neonates who were admitted to the Department of Neonatology, Kunming Children's Hospital, and received aEEG monitoring from January 2020 to December 2022. According to the aEEG monitoring results, they were divided into a normal aEEG group and an abnormal aEEG group. The incidence rate of aEEG abnormalities was analyzed in neonates with various systemic diseases, as well as the manifestations of aEEG abnormalities and the consistency between aEEG abnormalities and clinical abnormalities. Results Among the 5 945 neonates, the aEEG abnormality rate was 19.28% (1 146/5 945), with an abnormality rate of 29.58% (906/3 063) in critically ill neonates and 8.33% (240/2 882) in non-critically ill neonates (P<0.05). The children with inherited metabolic diseases showed the highest aEEG abnormality rate of 60.77% (79/130), followed by those with central nervous system disorders [42.22% (76/180)] and preterm infants [35.53% (108/304)]. Compared with the normal aEEG group, the abnormal aEEG group had significantly lower age and gestational age, as well as a significantly lower birth weight of preterm infants (P<0.05). Among the 1 146 neonates with aEEG abnormalities, the main types of aEEG abnormalities were sleep cycle disorders in 597 neonates (52.09%), background activity abnormalities in 294 neonates (25.65%), and epileptiform activity in 255 neonates (22.25%), and there were 902 neonates (78.71%) with abnormal clinical manifestations. The sensitivity and specificity of aEEG monitoring for brain function abnormalities were 33.51% and 92.50%, respectively. Conclusions In plateau areas, there is a relatively high rate of aEEG abnormalities among hospitalized neonates, particularly in critically ill neonates and those with smaller gestational ages and younger ages, suggesting a high risk of brain injury. Therefore, routine aEEG monitoring for the hospitalized neonates can help with the early detection of brain function abnormalities, the decision-making in treatment, and the formulation of brain protection strategies.

Key words

Amplitude-integrated electroencephalography / Plateau area / Brain function mornitoring / Neonate

Cite this article

Download Citations
ZHAO Xiao-Fen, CHENG Guo-Qiang, ZHAO Peng-Na, ZHAO Mei, ZHU Shuang-Yan, LI Yang-Fang, ZHOU Wen-Hao. Amplitude-integrated electroencephalography monitoring results of hospitalized neonates in plateau areas[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(8): 817-822 https://doi.org/10.7499/j.issn.1008-8830.2402078

References

1 中国抗癫痫协会脑电图与神经电生理分会新生儿脑电图学组. 新生儿振幅整合脑电图临床应用中国专家共识(2023)[J]. 中华新生儿科杂志(中英文), 2023, 38(3): 129-135. DOI: 10.3760/cma.j.issn.2096-2932.2023.03.001.
2 中华医学会急诊学分会儿科学组, 中华医学会儿科学分会急诊学组、新生儿学组. 新生儿危重病例评分法(草案)[J]. 中华儿科杂志, 2001, 39(1): 42-43. DOI: 10.3760/j.issn:0578-1310.2001.01.013.
3 Hellstr?m-Westas L. Amplitude-integrated electro-encephalography for seizure detection in newborn infants[J]. Semin Fetal Neonatal Med, 2018, 23(3): 175-182. PMID: 29472139. DOI: 10.1016/j.siny.2018.02.003.
4 Yuan X, Song J, Gao L, et al. Early amplitude-integrated electroencephalography predicts long-term outcomes in term and near-term newborns with severe hyperbilirubinemia[J]. Pediatr Neurol, 2019, 98: 68-73. PMID: 31253564. DOI: 10.1016/j.pediatrneurol.2019.04.015.
5 Sharabi H, Khatib N, Ginsberg Y, et al. Therapeutic N-acetyl-cysteine (Nac) following initiation of maternal inflammation attenuates long-term offspring cerebral injury, as evident in magnetic resonance imaging (MRI)[J]. Neuroscience, 2019, 403: 118-124. PMID: 29406268. DOI: 10.1016/j.neuroscience.2018.01.013.
6 Lee ES, Kim EK, Shin SH, et al. Factors associated with neurodevelopment in preterm infants with systematic inflammation[J]. BMC Pediatr, 2021, 21(1): 114. PMID: 33685414. PMCID: PMC7938564. DOI: 10.1186/s12887-021-02583-6.
7 Flück D, Morris LE, Niroula S, et al. UBC-Nepal expedition: markedly lower cerebral blood flow in high-altitude Sherpa children compared with children residing at sea level[J]. J Appl Physiol (1985), 2017, 123(4): 1003-1010. PMID: 28572497. PMCID: PMC5668443. DOI: 10.1152/japplphysiol.00292.2017.
8 Aboouf MA, Thiersch M, Soliz J, et al. The brain at high altitude: from molecular signaling to cognitive performance[J]. Int J Mol Sci, 2023, 24(12): 10179. PMID: 37373327. PMCID: PMC10299449. DOI: 10.3390/ijms241210179.
9 Ze B, Liu L, Yang Jin GS, et al. Near-infrared spectroscopy monitoring of cerebral oxygenation and influencing factors in neonates from high-altitude areas[J]. Neonatology, 2021, 118(3): 348-353. PMID: 34107488. DOI: 10.1159/000514403.
10 Xu Y, Fan Q. Relationship between chronic hypoxia and seizure susceptibility[J]. CNS Neurosci Ther, 2022, 28(11): 1689-1705. PMID: 35983626. PMCID: PMC9532927. DOI: 10.1111/cns.13942.
11 秦胜娟, 张丽, 刘敬, 等. 新生儿住院患者振幅整合脑电图监测结果分析[J]. 中华全科医师杂志, 2021, 20(8): 858-862. DOI: 10.3760/cma.j.cn114798-20210611-00456.
12 El-Dib M, Abend NS, Austin T, et al. Neuromonitoring in neonatal critical care part II: extremely premature infants and critically ill neonates[J]. Pediatr Res, 2023, 94(1): 55-63. PMID: 36434203. DOI: 10.1038/s41390-022-02392-2.
13 Sweetman DU, Strickland T, Isweisi E, et al. Multi-organ dysfunction scoring in neonatal encephalopathy (MODE Score) and neurodevelopmental outcomes[J]. Acta Paediatr, 2022, 111(1): 93-98. PMID: 34528287. DOI: 10.1111/apa.16111.
14 聂川, 周文浩. 中国新生儿危重病例评分法的应用及展望[J]. 中国小儿急救医学, 2023, 30(6): 457-460. DOI: 10.3760/cma.j.issn.1673-4912.2023.06.011.
15 Variane GFT, Rodrigues DP, Pietrobom RFR, et al. Newborns at high risk for brain injury: the role of the amplitude-integrated electroencephalography[J]. J Pediatr (Rio J), 2022, 98(6): 565-571. PMID: 34986412. PMCID: PMC9617284. DOI: 10.1016/j.jped.2021.10.008.
16 Vegda H, Krishnan V, Variane G, et al. Neonatal seizures-perspective in low-and middle-income countries[J]. Indian J Pediatr, 2022, 89(3): 245-253. PMID: 35050459. PMCID: PMC8857130. DOI: 10.1007/s12098-021-04039-2.
17 Yan K, Cheng G, Zhou W, et al. Incidence of neonatal seizures in China based on electroencephalogram monitoring in neonatal neurocritical care units[J]. JAMA Netw Open, 2023, 6(7): e2326301. PMID: 37505497. PMCID: PMC10383014. DOI: 10.1001/jamanetworkopen.2023.26301.
18 Zhang L, Zhou Y, Li X, et al. Hyperbilirubinemia influences sleep-wake cycles of term newborns in a non-linear manner[J]. PLoS One, 2017, 12(1): e0169783. PMID: 28072860. PMCID: PMC5224785. DOI: 10.1371/journal.pone.0169783.
19 Chang H, Zheng J, Ju J, et al. Amplitude-integrated electroencephalography improves the predictive ability of acute bilirubin encephalopathy[J]. Transl Pediatr, 2021, 10(3): 647-656. PMID: 33880334. PMCID: PMC8041610. DOI: 10.21037/tp-21-35.
20 Car KP, Nakwa F, Solomon F, et al. The association between early-onset sepsis and neonatal encephalopathy[J]. J Perinatol, 2022, 42(3): 354-358. PMID: 35001084. DOI: 10.1038/s41372-021-01290-5.
21 Chen S, Xiao X, Lin S, et al. Early aEEG can predict neurodevelopmental outcomes at 12 to 18 month of age in VLBWI with necrotizing enterocolitis: a cohort study[J]. BMC Pediatr, 2021, 21(1): 582. PMID: 34930183. PMCID: PMC8686651. DOI: 10.1186/s12887-021-03056-6.
PDF(551 KB)

Accesses

Citation

Detail

Sections
Recommended

/