Role of reactive oxygen species/silent information regulator 1 in hyperoxia-induced bronchial epithelial cell injury

YANG Kun, WU Yue, ZHANG Rong, LEI Xiao-Ping, KANG Lan, DONG Wen-Bin

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (8) : 852-860.

PDF(3931 KB)
PDF(3931 KB)
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (8) : 852-860. DOI: 10.7499/j.issn.1008-8830.2404120
EXPERIMENTAL RESEARCH

Role of reactive oxygen species/silent information regulator 1 in hyperoxia-induced bronchial epithelial cell injury

  • YANG Kun, WU Yue, ZHANG Rong, LEI Xiao-Ping, KANG Lan, DONG Wen-Bin
Author information +
History +

Abstract

Objective To investigate the effect of reactive oxygen species (ROS)/silent information regulator 1 (SIRT1) on hyperoxia-induced mitochondrial injury in BEAS-2B cells. Methods The experiment was divided into three parts. In the first part, cells were divided into H0, H6, H12, H24, and H48 groups. In the second part, cells were divided into control group, H48 group, H48 hyperoxia+SIRT1 inhibitor group (H48+EX 527 group), and H48 hyperoxia+SIRT1 agonist group (H48+SRT1720 group). In the third part, cells were divided into control group, 48-hour hyperoxia+N-acetylcysteine group (H48+NAC group), and H48 group. The ROS kit was used to measure the level of ROS. Western blot and immunofluorescent staining were used to measure the expression levels of SIRT1 and mitochondria-related proteins. Transmission electron microscopy was used to observe the morphology of mitochondria. Results Compared with the H0 group, the H6, H12, H24, and H48 groups had a significantly increased fluorescence intensity of ROS (P<0.05), the H48 group had significant reductions in the expression levels of SIRT1 protein and mitochondria-related proteins (P<0.05), and the H24 and H48 groups had a significant reduction in the fluorescence intensity of mitochondria-related proteins (P<0.05). Compared with the H48 group, the H48+SRT1720 group had significant increases in the expression levels of mitochondria-related proteins and the mitochondrial aspect ratio (P<0.05), and the H48+EX 527 group had a significant reduction in the mitochondrial area (P<0.05). Compared with the H48 group, the H48+NAC group had a significantly decreased fluorescence intensity of ROS (P<0.05) and significantly increased levels of SIRT1 protein, mitochondria-related proteins, mitochondrial area, and mitochondrial aspect ratio (P<0.05). Conclusions The ROS/SIRT1 axis is involved in hyperoxia-induced mitochondrial injury in BEAS-2B cells.

Key words

Mitochondrial injury / Hyperoxia / Reactive oxygen species / Silent information regulator 1 / Human bronchial epithelial cell

Cite this article

Download Citations
YANG Kun, WU Yue, ZHANG Rong, LEI Xiao-Ping, KANG Lan, DONG Wen-Bin. Role of reactive oxygen species/silent information regulator 1 in hyperoxia-induced bronchial epithelial cell injury[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(8): 852-860 https://doi.org/10.7499/j.issn.1008-8830.2404120

References

1 Schmidt AR, Ramamoorthy C. Bronchopulmonary dysplasia[J]. Paediatr Anaesth, 2022, 32(2): 174-180. PMID: 34877749. DOI: 10.1111/pan.14365.
2 Shukla VV, Ambalavanan N. Recent advances in bronchopulmonary dysplasia[J]. Indian J Pediatr, 2021, 88(7): 690-695. PMID: 34018135. DOI: 10.1007/s12098-021-03766-w.
3 Homan TD, Nayak RP. Short- and long-term complications of bronchopulmonary dysplasia[J]. Respir Care, 2021, 66(10): 1618-1629. PMID: 34552015. DOI: 10.4187/respcare.08401.
4 Hwang JS, Rehan VK. Recent advances in bronchopulmonary dysplasia: pathophysiology, prevention, and treatment[J]. Lung, 2018, 196(2): 129-138. PMID: 29374791. PMCID: PMC5856637. DOI: 10.1007/s00408-018-0084-z.
5 Wang J, Dong W. Oxidative stress and bronchopulmonary dysplasia[J]. Gene, 2018, 678: 177-183. PMID: 30098433. DOI: 10.1016/j.gene.2018.08.031.
6 Jhaveri Sanghvi U, Wright CJ, Hernandez TL. Pulmonary resilience: moderating the association between oxygen exposure and pulmonary outcomes in extremely preterm newborns[J]. Neonatology, 2022, 119(4): 433-442. PMID: 35551136. PMCID: PMC9296587. DOI: 10.1159/000524438.
7 Simon-Szabo Z, Fogarasi E, Nemes-Nagy E, et al. Oxidative stress and peripartum outcomes (review)[J]. Exp Ther Med, 2021, 22(1): 771. PMID: 34055070. PMCID: PMC8145513. DOI: 10.3892/etm.2021.10203.
8 Ten VS, Ratner V. Mitochondrial bioenergetics and pulmonary dysfunction: current progress and future directions[J]. Paediatr Respir Rev, 2020, 34: 37-45. PMID: 31060947. PMCID: PMC6790157. DOI: 10.1016/j.prrv.2019.04.001.
9 Yang K, Yang M, Shen Y, et al. Resveratrol attenuates hyperoxia lung injury in neonatal rats by activating SIRT1/PGC-1α signaling pathway[J]. Am J Perinatol, 2024, 41(8): 1039-1049. PMID: 35240708. DOI: 10.1055/a-1787-3396.
10 Adebayo M, Singh S, Singh AP, et al. Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis[J]. FASEB J, 2021, 35(6): e21620. PMID: 34048084. PMCID: PMC8415099. DOI: 10.1096/fj.202100067R.
11 Yang Y, Liu Y, Wang Y, et al. Regulation of SIRT1 and its roles in inflammation[J]. Front Immunol, 2022, 13: 831168. PMID: 35359990. PMCID: PMC8962665. DOI: 10.3389/fimmu.2022.831168.
12 Yang X, Dong WB, Lei XP, et al. Resveratrol suppresses hyperoxia-induced nucleocytoplasmic shuttling of SIRT1 and ROS production in PBMC from preterm infants in vitro[J]. J Matern Fetal Neonatal Med, 2018, 31(9): 1142-1150. PMID: 28420272. DOI: 10.1080/14767058.2017.1311310.
13 汪璠, 雷小平, 康兰, 等. 高氧抑制SIRT1和PGC-1α表达引起肺泡上皮细胞线粒体功能障碍[J]. 细胞与分子免疫学杂志, 2020, 36(9): 788-793. DOI: 10.13423/j.cnki.cjcmi.009064.
14 Kimble A, Robbins ME, Perez M. Pathogenesis of bronchopulmonary dysplasia: role of oxidative stress from 'omics' studies[J]. Antioxidants (Basel), 2022, 11(12): 2380. PMID: 36552588. PMCID: PMC9774798. DOI: 10.3390/antiox11122380.
15 Nardiello C, Mi?íková I, Silva DM, et al. Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia[J]. Dis Model Mech, 2017, 10(2): 185-196. PMID: 28067624. PMCID: PMC5312005. DOI: 10.1242/dmm.027086.
16 Greco F, Wiegert S, Baumann P, et al. Hyperoxia-induced lung structure-function relation, vessel rarefaction, and cardiac hypertrophy in an infant rat model[J]. J Transl Med, 2019, 17(1): 91. PMID: 30885241. PMCID: PMC6423834. DOI: 10.1186/s12967-019-1843-1.
17 Demirtas MS, Kilicbay F, Erdal H, et al. Oxidative stress levels and dynamic thiol-disulfide balance in preterm newborns with bronchopulmonary dysplasia[J]. Lab Med, 2023, 54(6): 587-592. PMID: 36896684. DOI: 10.1093/labmed/lmad010.
18 Yang M, Shen Y, Zhao S, et al. Protective effect of resveratrol on mitochondrial biogenesis during hyperoxia-induced brain injury in neonatal pups[J]. BMC Neurosci, 2023, 24(1): 27. PMID: 37098490. PMCID: PMC10127954. DOI: 10.1186/s12868-023-00797-1.
19 Garcia D, Carr JF, Chan F, et al. Short exposure to hyperoxia causes cultured lung epithelial cell mitochondrial dysregulation and alveolar simplification in mice[J]. Pediatr Res, 2021, 90(1): 58-65. PMID: 33144707. PMCID: PMC8089115. DOI: 10.1038/s41390-020-01224-5.
20 Kandasamy J, Olave N, Ballinger SW, et al. Vascular endothelial mitochondrial function predicts death or pulmonary outcomes in preterm infants[J]. Am J Respir Crit Care Med, 2017, 196(8): 1040-1049. PMID: 28485984. PMCID: PMC5649986. DOI: 10.1164/rccm.201702-0353OC.
21 Ma C, Beyer AM, Durand M, et al. Hyperoxia causes mitochondrial fragmentation in pulmonary endothelial cells by increasing expression of pro-fission proteins[J]. Arterioscler Thromb Vasc Biol, 2018, 38(3): 622-635. PMID: 29419407. PMCID: PMC5823793. DOI: 10.1161/ATVBAHA.117.310605.
22 Dai Y, Yu B, Ai D, et al. Mitochondrial fission-mediated lung development in newborn rats with hyperoxia-induced bronchopulmonary dysplasia with pulmonary hypertension[J]. Front Pediatr, 2020, 8: 619853. PMID: 33634054. PMCID: PMC7902063. DOI: 10.3389/fped.2020.619853.
23 Chen C, Zhou M, Ge Y, et al. SIRT1 and aging related signaling pathways[J]. Mech Ageing Dev, 2020, 187: 111215. PMID: 32084459. DOI: 10.1016/j.mad.2020.111215.
24 Zhu X, Wang F, Lei X, et al. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction[J]. Exp Biol Med (Maywood), 2021, 246(5): 596-606. PMID: 33215523. PMCID: PMC7934147. DOI: 10.1177/1535370220975106.
25 Hong CY, Zhang HD, Liu XY, et al. Attenuation of hyperoxic acute lung injury by Lycium barbarum polysaccharide via inhibiting NLRP3 inflammasome[J]. Arch Pharm Res, 2019, 42(10): 902-908. PMID: 31388826. DOI: 10.1007/s12272-019-01175-4.
26 Liang Z, Yue H, Xu C, et al. Protectin DX relieve hyperoxia-induced lung injury by protecting pulmonary endothelial glycocalyx[J]. J Inflamm Res, 2023, 16: 421-431. PMID: 36755970. PMCID: PMC9900492. DOI: 10.2147/JIR.S391765.
27 Yang K, Dong W. SIRT1-related signaling pathways and their association with bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2021, 8: 595634. PMID: 33693011. PMCID: PMC7937618. DOI: 10.3389/fmed.2021.595634.
28 Yang J, Li H, Zhang C, et al. Indoxyl sulfate reduces Ito,f by activating ROS/MAPK and NF-κB signaling pathways[J]. JCI insight, 2022, 7(3): e145475. PMID: 35132967. PMCID: PMC8855797. DOI: 10.1172/jci.insight.145475.
PDF(3931 KB)

Accesses

Citation

Detail

Sections
Recommended

/