Effects of inhibition of Rho/ROCK pathway on proliferation and migration of airway smooth muscle cells and related mechanisms

CUI Yun-Fei, LU Qing-Hua, HUANG Xiao, LIN Wei-Nan, HUANG Ting, YANG Qin.

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (9) : 974-981.

PDF(3296 KB)
PDF(3296 KB)
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (9) : 974-981. DOI: 10.7499/j.issn.1008-8830.2405119
EXPERIMENTAL RESEARCH

Effects of inhibition of Rho/ROCK pathway on proliferation and migration of airway smooth muscle cells and related mechanisms

  • CUI Yun-Fei, LU Qing-Hua, HUANG Xiao, LIN Wei-Nan, HUANG Ting, YANG Qin.
Author information +
History +

Abstract

Objective To investigate the effects and molecular mechanisms of inhibition of the Ras homolog gene (Rho)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway on the proliferation and migration of airway smooth muscle cells involving myocardin (MYOCD). Methods Human airway smooth muscle cells were infected with the adenoviral vector Ad-ZsGreen-shRNA-hROCK1 in vitro. The cells were randomly divided into four groups: ROCK1 gene silencing control (shNC) group, shNC + arachidonic acid (AA, Rho/ROCK pathway activator) group, ROCK1 gene silencing (shROCK1) group, and shROCK1 + AA group (n=3 each). Quantitative real-time polymerase chain reaction and Western blot were used to detect the expression levels of ROCK1 and MYOCD mRNA and protein. ELISA was employed to measure the levels of globular actin and filamentous actin, while immunofluorescent staining and scratch assays were utilized to assess cell proliferation and migration. Results Compared to the shNC + AA group, the shROCK1 + AA group exhibited decreased levels of ROCK1 and MYOCD mRNA and protein expression, reduced expression levels of globular actin and filamentous actin, and diminished cell proliferation and migration capabilities (P<0.05). Conclusions Inhibition of the Rho/ROCK pathway suppresses the proliferation and migration of airway smooth muscle cells, which may be associated with the downregulation of MYOCD.

Key words

Asthma / Rho/ROCK pathway / Myocardin / Proliferation / Airway smooth muscle cell

Cite this article

Download Citations
CUI Yun-Fei, LU Qing-Hua, HUANG Xiao, LIN Wei-Nan, HUANG Ting, YANG Qin.. Effects of inhibition of Rho/ROCK pathway on proliferation and migration of airway smooth muscle cells and related mechanisms[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(9): 974-981 https://doi.org/10.7499/j.issn.1008-8830.2405119

References

1 Castagnoli R, Brambilla I, Giudice MMD, et al. Applying the new guidelines to asthma management in children[J]. Curr Opin Allergy Clin Immunol, 2023, 23(2): 132-136. PMID: 36637070. DOI: 10.1097/ACI.0000000000000892.
2 Venancio-Hernández M, Mendieta-Flores E, Mendiola-Marín J, et al. The diagnostic approach to difficult-to-treat asthma and severe asthma[J]. Rev Alerg Mex, 2022, 69 Suppl 1: s94-s111. PMID: 34998314. DOI: 10.29262/ram.v69iSupl1.1046.
3 Salter B, Pray C, Radford K, et al. Regulation of human airway smooth muscle cell migration and relevance to asthma[J]. Respir Res, 2017, 18(1): 156. PMID: 28814293. PMCID: PMC5559796. DOI: 10.1186/s12931-017-0640-8.
4 Huang Y, Qiu C. Research advances in airway remodeling in asthma: a narrative review[J]. Ann Transl Med, 2022, 10(18): 1023. PMID: 36267708. PMCID: PMC9577744. DOI: 10.21037/atm-22-2835.
5 Kim S, Kim SA, Han J, et al. Rho-kinase as a target for cancer therapy and its immunotherapeutic potential[J]. Int J Mol Sci, 2021, 22(23): 12916. PMID: 34884721. PMCID: PMC8657458. DOI: 10.3390/ijms222312916.
6 Yang Q, Shi W. Rho/ROCK-MYOCD in regulating airway smooth muscle growth and remodeling[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(1): L1-L5. PMID: 33909498. DOI: 10.1152/ajplung.00034.2021.
7 Khachigian LM, Black BL, Ferdinandy P, et al. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: novel targets for therapy[J]. Vascul Pharmacol, 2022, 146: 107091. PMID: 35896140. DOI: 10.1016/j.vph.2022.107091.
8 Yang Q, Miao Q, Chen H, et al. Myocd regulates airway smooth muscle cell remodeling in response to chronic asthmatic injury[J]. J Pathol, 2023, 259(3): 331-341. PMID: 36484734. PMCID: PMC10107741. DOI: 10.1002/path.6044.
9 Li N, Cai R, Niu Y, et al. Inhibition of angiotensin II-induced contraction of human airway smooth muscle cells by angiotensin-(1-7) via downregulation of the RhoA/ROCK2 signaling pathway[J]. Int J Mol Med, 2012, 30(4): 811-818. PMID: 22842919. DOI: 10.3892/ijmm.2012.1080.
10 Sun M, Huang Y, Li F, et al. MicroRNA-874 inhibits TNF-α-induced remodeling in human fetal airway smooth muscle cells by targeting STAT3[J]. Respir Physiol Neurobiol, 2018, 251: 34-40. PMID: 29448029. DOI: 10.1016/j.resp.2018.02.008.
11 Si Z, Zhang B. Amygdalin attenuates airway epithelium apoptosis, inflammation, and epithelial-mesenchymal transition through restraining the TLR4/NF-κB signaling pathway on LPS-treated BEAS-2B bronchial epithelial cells[J]. Int Arch Allergy Immunol, 2021, 182(10): 997-1007. PMID: 34428767. DOI: 10.1159/000514209.
12 Hassan M, Jo T, Risse PA, et al. Airway smooth muscle remodeling is a dynamic process in severe long-standing asthma[J]. J Allergy Clin Immunol, 2010, 125(5): 1037-1045.e3. PMID: 20451038. DOI: 10.1016/j.jaci.2010.02.031.
13 Liu W, Kong H, Zeng X, et al. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration[J]. Exp Cell Res, 2015, 336(2): 204-210. PMID: 26160451. DOI: 10.1016/j.yexcr.2015.06.020.
14 Zheng JP, He X, Liu F, et al. YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation[J]. Sci Rep, 2020, 10(1): 21781. PMID: 33311559. PMCID: PMC7732823. DOI: 10.1038/s41598-020-78544-3.
15 Rippe C, Morén B, Liu L, et al. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells[J]. Sci Rep, 2021, 11(1): 5955. PMID: 33727640. PMCID: PMC7966398. DOI: 10.1038/s41598-021-85335-x.
16 Sakai H, Suto W, Kai Y, et al. Mechanisms underlying the pathogenesis of hyper-contractility of bronchial smooth muscle in allergic asthma[J]. J Smooth Muscle Res, 2017, 53(0): 37-47. PMID: 28484126. PMCID: PMC5411784. DOI: 10.1540/jsmr.53.37.
17 Wang L, Chitano P, Paré PD, et al. Upregulation of smooth muscle Rho-kinase protein expression in human asthma[J]. Eur Respir J, 2020, 55(3): 1901785. PMID: 31727693. DOI: 10.1183/13993003.01785-2019.
18 Wamhoff BR, Bowles DK, McDonald OG, et al. L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a rho kinase/myocardin/SRF-dependent mechanism[J]. Circ Res, 2004, 95(4): 406-414. PMID: 15256479. DOI: 10.1161/01.RES.0000138582.36921.9e.
19 Sawma T, Shaito A, Najm N, et al. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: implications for vascular function[J]. Atherosclerosis, 2022, 358: 12-28. PMID: 36049290. DOI: 10.1016/j.atherosclerosis.2022.08.012.
20 Miralles F, Posern G, Zaromytidou AI, et al. Actin dynamics control SRF activity by regulation of its coactivator MAL[J]. Cell, 2003, 113(3): 329-342. PMID: 12732141. DOI: 10.1016/s0092-8674(03)00278-2.
21 Wang DZ, Li S, Hockemeyer D, et al. Potentiation of serum response factor activity by a family of myocardin-related transcription factors[J]. Proc Natl Acad Sci U S A, 2002, 99(23): 14855-14860. PMID: 12397177. PMCID: PMC137508. DOI: 10.1073/pnas.222561499.
22 Zhou N, Lee JJ, Stoll S, et al. Rho kinase regulates aortic vascular smooth muscle cell stiffness via actin/SRF/myocardin in hypertension[J]. Cell Physiol Biochem, 2017, 44(2): 701-715. PMID: 29169155. PMCID: PMC6200323. DOI: 10.1159/000485284.
23 Gorenne I, Jin L, Yoshida T, et al. LPP expression during in vitro smooth muscle differentiation and stent-induced vascular injury[J]. Circ Res, 2006, 98(3): 378-385. PMID: 16397143. DOI: 10.1161/01.RES.0000202802.34727.fd.
24 Luo L, Wang L, Paré PD, et al. The Huxley crossbridge model as the basic mechanism for airway smooth muscle contraction[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 317(2): L235-L246. PMID: 31116578. PMCID: PMC6734385. DOI: 10.1152/ajplung.00051.2019.
25 Ojiaku CA, Cao G, Zhu W, et al. TGF-β1 evokes human airway smooth muscle cell shortening and hyperresponsiveness via Smad3[J]. Am J Respir Cell Mol Biol, 2018, 58(5): 575-584. PMID: 28984468. PMCID: PMC5946330. DOI: 10.1165/rcmb.2017-0247OC.
26 álvarez-Santos MD, álvarez-González M, Estrada-Soto S, et al. Regulation of myosin light-chain phosphatase activity to generate airway smooth muscle hypercontractility[J]. Front Physiol, 2020, 11: 701. PMID: 32676037. PMCID: PMC7333668. DOI: 10.3389/fphys.2020.00701.
27 Sieck GC, Dogan M, Young-Soo H, et al. Mechanisms underlying TNFα-induced enhancement of force generation in airway smooth muscle[J]. Physiol Rep, 2019, 7(17): e14220. PMID: 31512410. PMCID: PMC6739507. DOI: 10.14814/phy2.14220.
28 Liu L, Kryvokhyzha D, Rippe C, et al. Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors[J]. Cell Mol Life Sci, 2022, 79(8): 459. PMID: 35913515. PMCID: PMC9343278. DOI: 10.1007/s00018-022-04497-7.
29 Kiss A, Erd?di F, Lontay B. Myosin phosphatase: unexpected functions of a long-known enzyme[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(1): 2-15. PMID: 30076859. DOI: 10.1016/j.bbamcr.2018.07.023.
30 Guan G, Cannon RD, Coates DE, et al. Effect of the rho-kinase/ROCK signaling pathway on cytoskeleton components[J]. Genes (Basel), 2023, 14(2): 272. PMID: 36833199. PMCID: PMC9957420. DOI: 10.3390/genes14020272.
PDF(3296 KB)

Accesses

Citation

Detail

Sections
Recommended

/